diff --git a/docs/models/supported_models.md b/docs/models/supported_models.md
index c25c4b52197e..9db6f8036a73 100644
--- a/docs/models/supported_models.md
+++ b/docs/models/supported_models.md
@@ -662,7 +662,7 @@ These models primarily accept the [`LLM.generate`](./generative_models.md#llmgen
| `Qwen2AudioForConditionalGeneration` | Qwen2-Audio | T + A+ | `Qwen/Qwen2-Audio-7B-Instruct` | | ✅︎ | ✅︎ |
| `Qwen2VLForConditionalGeneration` | QVQ, Qwen2-VL | T + IE+ + VE+ | `Qwen/QVQ-72B-Preview`, `Qwen/Qwen2-VL-7B-Instruct`, `Qwen/Qwen2-VL-72B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2_5_VLForConditionalGeneration` | Qwen2.5-VL | T + IE+ + VE+ | `Qwen/Qwen2.5-VL-3B-Instruct`, `Qwen/Qwen2.5-VL-72B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
-| `Qwen2_5OmniThinkerForConditionalGeneration` | Qwen2.5-Omni | T + IE+ + VE+ + A+ | `Qwen/Qwen2.5-Omni-7B` | | ✅︎ | ✅︎ |
+| `Qwen2_5OmniThinkerForConditionalGeneration` | Qwen2.5-Omni | T + IE+ + VE+ + A+ | `Qwen/Qwen2.5-Omni-3B`, `Qwen/Qwen2.5-Omni-7B` | ✅︎ | ✅︎ | ✅︎ |
| `RForConditionalGeneration` | R-VL-4B | T + IE+ | `YannQi/R-4B` | | ✅︎ | ✅︎ |
| `SkyworkR1VChatModel` | Skywork-R1V-38B | T + I | `Skywork/Skywork-R1V-38B` | | ✅︎ | ✅︎ |
| `SmolVLMForConditionalGeneration` | SmolVLM2 | T + I | `SmolVLM2-2.2B-Instruct` | ✅︎ | | ✅︎ |
diff --git a/vllm/model_executor/models/qwen2_5_omni_thinker.py b/vllm/model_executor/models/qwen2_5_omni_thinker.py
index 5c64c81547e6..29563540a794 100644
--- a/vllm/model_executor/models/qwen2_5_omni_thinker.py
+++ b/vllm/model_executor/models/qwen2_5_omni_thinker.py
@@ -41,6 +41,7 @@ from transformers.models.whisper import WhisperFeatureExtractor
from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.rotary_embedding import MRotaryEmbedding
+from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.models.qwen2_5_vl import (
Qwen2_5_VisionTransformer, Qwen2_5_VLImageEmbeddingInputs,
Qwen2_5_VLImageInputs, Qwen2_5_VLImagePixelInputs,
@@ -66,7 +67,8 @@ from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.tokenizer import decode_tokens, encode_tokens
-from .interfaces import MultiModalEmbeddings, SupportsMultiModal, SupportsPP
+from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
+ SupportsMultiModal, SupportsPP)
from .utils import (AutoWeightsLoader, WeightsMapper,
init_vllm_registered_model, maybe_prefix,
merge_multimodal_embeddings)
@@ -705,7 +707,7 @@ class Qwen2_5OmniConditionalGenerationMixin:
dummy_inputs=Qwen2_5OmniThinkerDummyInputsBuilder,
)
class Qwen2_5OmniThinkerForConditionalGeneration(
- nn.Module, SupportsMultiModal, SupportsPP,
+ nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA,
Qwen2_5OmniConditionalGenerationMixin):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={
@@ -798,6 +800,15 @@ class Qwen2_5OmniThinkerForConditionalGeneration(
def get_language_model(self) -> torch.nn.Module:
return self.language_model
+ def get_mm_mapping(self) -> MultiModelKeys:
+ """Get module prefix for multimodal models to filter LoRA modules."""
+ return MultiModelKeys.from_string_field(
+ language_model="language_model",
+ connector=[], # No explicit connector in this model
+ tower_model=["visual",
+ "audio_tower"], # Exclude vision and audio towers
+ )
+
def get_multimodal_embeddings(self,
**kwargs: object) -> MultiModalEmbeddings: