[V1] TPU - Add tensor parallel support via Ray (#13618)

Signed-off-by: Alexander Matveev <amatveev@redhat.com>
This commit is contained in:
Alexander Matveev 2025-03-08 08:19:38 -05:00 committed by GitHub
parent 33f227e16b
commit cb8bdfade2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 80 additions and 4 deletions

View File

@ -42,6 +42,10 @@ def run_test(more_args=None):
), f"Expected: {EXPECTED_VALUE} | Measured: {measured_value}"
# TODO: [AlexM] Fix it with new CI/CD tests
TPU_TP_TEST_STR = "" #"tensor_parallel_size=4"
@pytest.mark.skipif(not current_platform.is_cuda()
and not current_platform.is_tpu(),
reason="V1 is currently only supported on CUDA and TPU")
@ -56,6 +60,10 @@ def test_lm_eval_accuracy_v1_engine(monkeypatch):
# Limit compilation time for TPU V1
more_args = "max_num_seqs=64"
# Add TP test (if provided)
if TPU_TP_TEST_STR:
more_args += ",{}".format(TPU_TP_TEST_STR)
run_test(more_args)

0
tests/v1/tpu/__init__.py Normal file
View File

View File

@ -0,0 +1,54 @@
# SPDX-License-Identifier: Apache-2.0
"""A basic correctness check for TPUs
Run `pytest tests/v1/tpu/test_basic.py`.
"""
import pytest
from vllm.platforms import current_platform
from ...conftest import VllmRunner
MODELS = [
# "Qwen/Qwen2-7B-Instruct",
"meta-llama/Llama-3.1-8B",
# TODO: Add models here as necessary
]
TENSOR_PARALLEL_SIZES = [1]
# TODO: Enable when CI/CD will have a multi-tpu instance
# TENSOR_PARALLEL_SIZES = [1, 4]
@pytest.mark.skipif(not current_platform.is_tpu(),
reason="This is a basic test for TPU only")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("max_tokens", [5])
@pytest.mark.parametrize("enforce_eager", [True])
@pytest.mark.parametrize("tensor_parallel_size", TENSOR_PARALLEL_SIZES)
def test_models(
monkeypatch,
model: str,
max_tokens: int,
enforce_eager: bool,
tensor_parallel_size: int,
) -> None:
prompt = "The next numbers of the sequence " + ", ".join(
str(i) for i in range(1024)) + " are:"
example_prompts = [prompt]
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
with VllmRunner(
model,
max_model_len=8192,
enforce_eager=enforce_eager,
gpu_memory_utilization=0.7,
max_num_seqs=16,
tensor_parallel_size=tensor_parallel_size) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts,
max_tokens)
output = vllm_outputs[0][1]
assert "1024" in output

View File

@ -73,9 +73,14 @@ class RayDistributedExecutor(DistributedExecutorBase):
def _init_executor(self) -> None:
self.forward_dag: Optional[ray.dag.CompiledDAG] = None
if envs.VLLM_USE_V1:
# v1 always uses the compiled DAG and SPMD worker.
# V1 uses SPMD worker and compiled DAG
os.environ["VLLM_USE_RAY_SPMD_WORKER"] = "1"
os.environ["VLLM_USE_RAY_COMPILED_DAG"] = "1"
# For TPU, avoid compiling NVIDIA's NCCL
if current_platform.is_tpu():
os.environ["VLLM_USE_RAY_COMPILED_DAG_NCCL_CHANNEL"] = "0"
# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.

View File

@ -11,6 +11,7 @@ import vllm.platforms
from vllm.config import ParallelConfig
from vllm.executor.msgspec_utils import decode_hook, encode_hook
from vllm.logger import init_logger
from vllm.platforms import current_platform
from vllm.sequence import ExecuteModelRequest, IntermediateTensors
from vllm.utils import get_ip
from vllm.worker.worker_base import WorkerWrapperBase
@ -106,10 +107,15 @@ try:
# on a background thread, so we need to reset torch's current
# device.
# We can remove this API after it is fixed in compiled graph.
import torch
assert self.worker is not None, "Worker is not initialized"
if not self.compiled_dag_cuda_device_set:
torch.cuda.set_device(self.worker.device)
if current_platform.is_tpu():
# Not needed
pass
else:
import torch
torch.cuda.set_device(self.worker.device)
self.compiled_dag_cuda_device_set = True
def execute_model_ray(

View File

@ -21,6 +21,7 @@ from vllm.model_executor.model_loader import get_model
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.multimodal.utils import group_mm_inputs_by_modality
from vllm.sampling_params import SamplingType
from vllm.sequence import IntermediateTensors
from vllm.utils import LayerBlockType, cdiv, is_pin_memory_available
from vllm.v1.attention.backends.pallas import (NUM_KV_PAGES_PER_BLOCK,
NUM_QUERIES_PER_BLOCK,
@ -545,6 +546,7 @@ class TPUModelRunner:
def execute_model(
self,
scheduler_output: "SchedulerOutput",
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> ModelRunnerOutput:
# Update cached state
self._update_states(scheduler_output)

View File

@ -96,7 +96,8 @@ class TPUWorker:
# Set random seed.
set_random_seed(self.model_config.seed)
xm.set_rng_state(self.model_config.seed, self.device)
if self.model_config.seed is not None:
xm.set_rng_state(self.model_config.seed, self.device)
# Increase the cache size limit, which is the maximum number of
# dynamo graphs that can be compiled.