[CI/Build] Avoid duplicate empty inputs test for common multimodal generation tests (#29907)

Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
This commit is contained in:
Isotr0py 2025-12-03 18:27:36 +08:00 committed by GitHub
parent a21cd9ed23
commit cc4e296ea6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 69 additions and 63 deletions

View File

@ -137,7 +137,7 @@ VLM_TEST_SETTINGS = {
max_num_seqs=2,
auto_cls=AutoModelForImageTextToText,
vllm_output_post_proc=model_utils.qwen2_vllm_to_hf_output,
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
image_size_factors=[(0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
"qwen2_5_omni": VLMTestInfo(
@ -152,7 +152,7 @@ VLM_TEST_SETTINGS = {
auto_cls=AutoModelForTextToWaveform,
vllm_output_post_proc=model_utils.qwen2_vllm_to_hf_output,
patch_hf_runner=model_utils.qwen2_5_omni_patch_hf_runner,
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
image_size_factors=[(0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
marks=[pytest.mark.core_model, pytest.mark.cpu_model],
),
"qwen3_vl": VLMTestInfo(
@ -173,7 +173,7 @@ VLM_TEST_SETTINGS = {
auto_cls=AutoModelForImageTextToText,
vllm_output_post_proc=model_utils.qwen2_vllm_to_hf_output,
patch_hf_runner=model_utils.qwen3_vl_patch_hf_runner,
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
image_size_factors=[(0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
marks=[
pytest.mark.core_model,
],
@ -350,7 +350,7 @@ VLM_TEST_SETTINGS = {
patch_hf_runner=model_utils.deepseekvl2_patch_hf_runner,
hf_output_post_proc=model_utils.deepseekvl2_trunc_hf_output,
stop_str=["<end▁of▁sentence>", "<begin▁of▁sentence>"],
image_size_factors=[(), (1.0,), (1.0, 1.0, 1.0), (0.1, 0.5, 1.0)],
image_size_factors=[(1.0,), (1.0, 1.0, 1.0), (0.1, 0.5, 1.0)],
),
"fuyu": VLMTestInfo(
models=["adept/fuyu-8b"],
@ -707,7 +707,7 @@ VLM_TEST_SETTINGS = {
max_model_len=8192,
max_num_seqs=2,
auto_cls=AutoModelForCausalLM,
image_size_factors=[(), (0.25,)],
image_size_factors=[(0.25,)],
marks=[
pytest.mark.skipif(
Version(TRANSFORMERS_VERSION) == Version("4.57.3"),
@ -760,7 +760,7 @@ VLM_TEST_SETTINGS = {
max_num_seqs=2,
auto_cls=AutoModelForImageTextToText,
vllm_output_post_proc=model_utils.qwen2_vllm_to_hf_output,
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
image_size_factors=[(0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
marks=[pytest.mark.cpu_model],
),
"skywork_r1v": VLMTestInfo(
@ -812,7 +812,7 @@ VLM_TEST_SETTINGS = {
max_model_len=4096,
max_num_seqs=2,
auto_cls=AutoModelForImageTextToText,
image_size_factors=[(), (0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
image_size_factors=[(0.25,), (0.25, 0.25, 0.25), (0.25, 0.2, 0.15)],
marks=[pytest.mark.skip("Model initialization hangs")],
),
### Tensor parallel / multi-gpu broadcast tests

View File

@ -62,6 +62,65 @@ def get_filtered_test_settings(
return matching_tests
def get_model_type_cases(
model_type: str,
test_info: VLMTestInfo,
test_type: VLMTestType,
):
# Ensure that something is wrapped as an iterable it's not already
ensure_wrapped = lambda e: e if isinstance(e, (list, tuple)) else (e,)
# This is essentially the same as nesting a bunch of mark.parametrize
# decorators, but we do it programmatically to allow overrides for on
# a per-model basis, while still being able to execute each of these
# as individual test cases in pytest.
iter_kwargs = OrderedDict(
[
("model", ensure_wrapped(test_info.models)),
("max_tokens", ensure_wrapped(test_info.max_tokens)),
("num_logprobs", ensure_wrapped(test_info.num_logprobs)),
("dtype", ensure_wrapped(test_info.dtype)),
(
"distributed_executor_backend",
ensure_wrapped(test_info.distributed_executor_backend),
),
]
)
# num_frames is video only
if test_type == VLMTestType.VIDEO:
iter_kwargs["num_video_frames"] = ensure_wrapped(test_info.num_video_frames)
iter_kwargs["needs_video_metadata"] = ensure_wrapped(
test_info.needs_video_metadata
)
# No sizes passed for custom inputs, since inputs are directly provided
if test_type not in (
VLMTestType.CUSTOM_INPUTS,
VLMTestType.AUDIO,
):
wrapped_sizes = get_wrapped_test_sizes(test_info, test_type)
if wrapped_sizes is None:
raise ValueError(f"Sizes must be set for test type {test_type}")
iter_kwargs["size_wrapper"] = wrapped_sizes
# Otherwise expand the custom test options instead
elif test_type == VLMTestType.CUSTOM_INPUTS:
if test_info.custom_test_opts is None:
raise ValueError("Test has type CUSTOM_INPUTS, but none given")
iter_kwargs["custom_test_opts"] = test_info.custom_test_opts
# Wrap all model cases in a pytest parameter & pass marks through
return [
pytest.param(
model_type,
ExpandableVLMTestArgs(**{k: v for k, v in zip(iter_kwargs.keys(), case)}),
marks=test_info.marks if test_info.marks is not None else [],
)
for case in list(itertools.product(*iter_kwargs.values()))
]
def get_parametrized_options(
test_settings: dict[str, VLMTestInfo],
test_type: VLMTestType,
@ -76,64 +135,11 @@ def get_parametrized_options(
test_settings, test_type, create_new_process_for_each_test
)
# Ensure that something is wrapped as an iterable it's not already
ensure_wrapped = lambda e: e if isinstance(e, (list, tuple)) else (e,)
def get_model_type_cases(model_type: str, test_info: VLMTestInfo):
# This is essentially the same as nesting a bunch of mark.parametrize
# decorators, but we do it programmatically to allow overrides for on
# a per-model basis, while still being able to execute each of these
# as individual test cases in pytest.
iter_kwargs = OrderedDict(
[
("model", ensure_wrapped(test_info.models)),
("max_tokens", ensure_wrapped(test_info.max_tokens)),
("num_logprobs", ensure_wrapped(test_info.num_logprobs)),
("dtype", ensure_wrapped(test_info.dtype)),
(
"distributed_executor_backend",
ensure_wrapped(test_info.distributed_executor_backend),
),
]
)
# num_frames is video only
if test_type == VLMTestType.VIDEO:
iter_kwargs["num_video_frames"] = ensure_wrapped(test_info.num_video_frames)
iter_kwargs["needs_video_metadata"] = ensure_wrapped(
test_info.needs_video_metadata
)
# No sizes passed for custom inputs, since inputs are directly provided
if test_type not in (VLMTestType.CUSTOM_INPUTS, VLMTestType.AUDIO):
wrapped_sizes = get_wrapped_test_sizes(test_info, test_type)
if wrapped_sizes is None:
raise ValueError(f"Sizes must be set for test type {test_type}")
iter_kwargs["size_wrapper"] = wrapped_sizes
# Otherwise expand the custom test options instead
elif test_type == VLMTestType.CUSTOM_INPUTS:
if test_info.custom_test_opts is None:
raise ValueError("Test has type CUSTOM_INPUTS, but none given")
iter_kwargs["custom_test_opts"] = test_info.custom_test_opts
# Wrap all model cases in a pytest parameter & pass marks through
return [
pytest.param(
model_type,
ExpandableVLMTestArgs(
**{k: v for k, v in zip(iter_kwargs.keys(), case)}
),
marks=test_info.marks if test_info.marks is not None else [],
)
for case in list(itertools.product(*iter_kwargs.values()))
]
# Get a list per model type, where each entry contains a tuple of all of
# that model type's cases, then flatten them into the top level so that
# we can consume them in one mark.parametrize call.
cases_by_model_type = [
get_model_type_cases(model_type, test_info)
get_model_type_cases(model_type, test_info, test_type)
for model_type, test_info in matching_tests.items()
]
return list(itertools.chain(*cases_by_model_type))

View File

@ -50,8 +50,8 @@ MULTI_IMAGE_BASE_PROMPT = f"Image-1: {TEST_IMG_PLACEHOLDER}Image-2: {TEST_IMG_PL
VIDEO_BASE_PROMPT = f"{TEST_VIDEO_PLACEHOLDER}Why is this video funny?"
IMAGE_SIZE_FACTORS = [(), (1.0,), (1.0, 1.0, 1.0), (0.25, 0.5, 1.0)]
EMBEDDING_SIZE_FACTORS = [(), (1.0,), (1.0, 1.0, 1.0)]
IMAGE_SIZE_FACTORS = [(1.0,), (1.0, 1.0, 1.0), (0.25, 0.5, 1.0)]
EMBEDDING_SIZE_FACTORS = [(1.0,), (1.0, 1.0, 1.0)]
RunnerOutput = tuple[list[int], str, SampleLogprobs | None]