Updating lm-format-enforcer version and adding links to decoding libraries in docs (#4222)

This commit is contained in:
Noam Gat 2024-04-20 11:33:16 +03:00 committed by GitHub
parent 91528575ec
commit cc74b2b232
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 8 additions and 4 deletions

View File

@ -12,7 +12,7 @@ uvicorn[standard]
pydantic >= 2.0 # Required for OpenAI server.
prometheus_client >= 0.18.0
tiktoken == 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer == 0.9.3
lm-format-enforcer == 0.9.8
outlines == 0.0.34 # Requires torch >= 2.1.0
typing_extensions
filelock >= 3.10.4 # filelock starts to support `mode` argument from 3.10.4

View File

@ -197,7 +197,11 @@ class EngineArgs:
default='outlines',
choices=['outlines', 'lm-format-enforcer'],
help='Which engine will be used for guided decoding'
' (JSON schema / regex etc).')
' (JSON schema / regex etc) by default. Currently support '
'https://github.com/outlines-dev/outlines and '
'https://github.com/noamgat/lm-format-enforcer.'
' Can be overridden per request via guided_decoding_backend'
' parameter.')
# Parallel arguments
parser.add_argument('--worker-use-ray',
action='store_true',

View File

@ -1,4 +1,4 @@
from typing import Any, Dict, List, Optional
from typing import Any, Dict, List, Optional, Tuple
import torch
from torch.nn import Module
@ -114,7 +114,7 @@ class Fp8LinearMethod(LinearMethodBase):
return output
def per_tensor_quantize(tensor: torch.Tensor) -> tuple[torch.Tensor, float]:
def per_tensor_quantize(tensor: torch.Tensor) -> Tuple[torch.Tensor, float]:
"""Quantize a tensor using per-tensor static scaling factor.
Args: