diff --git a/vllm/benchmarks/datasets.py b/vllm/benchmarks/datasets.py index 35cc303f60eeb..21fe3eb629e21 100644 --- a/vllm/benchmarks/datasets.py +++ b/vllm/benchmarks/datasets.py @@ -328,9 +328,9 @@ class RandomDataset(BenchmarkDataset): output_high = int(output_len * (1 + range_ratio)) # Add logging for debugging - logger.info("Sampling input_len from [%s, %s]", input_low, input_high) - logger.info("Sampling output_len from [%s, %s]", output_low, - output_high) + logger.info( + "Sampling input_len from [%s, %s] and output_len from [%s, %s]", + input_low, input_high, output_low, output_high) input_lens = np.random.randint(input_low, input_high + 1, diff --git a/vllm/benchmarks/latency.py b/vllm/benchmarks/latency.py index c9e03cc3bf781..dc1c42879b2cf 100644 --- a/vllm/benchmarks/latency.py +++ b/vllm/benchmarks/latency.py @@ -78,7 +78,6 @@ def add_cli_args(parser: argparse.ArgumentParser): def main(args: argparse.Namespace): - print(args) if args.profile and not envs.VLLM_TORCH_PROFILER_DIR: raise OSError( "The environment variable 'VLLM_TORCH_PROFILER_DIR' is not set. " @@ -101,7 +100,6 @@ def main(args: argparse.Namespace): max_tokens=args.output_len, detokenize=not args.disable_detokenize, ) - print(sampling_params) dummy_prompt_token_ids = np.random.randint(10000, size=(args.batch_size, args.input_len)) diff --git a/vllm/benchmarks/throughput.py b/vllm/benchmarks/throughput.py index 13110a8b4db3f..3ea6c194baa8a 100644 --- a/vllm/benchmarks/throughput.py +++ b/vllm/benchmarks/throughput.py @@ -527,7 +527,6 @@ def main(args: argparse.Namespace): validate_args(args) if args.seed is None: args.seed = 0 - print(args) random.seed(args.seed) # Sample the requests. tokenizer = AutoTokenizer.from_pretrained( diff --git a/vllm/compilation/backends.py b/vllm/compilation/backends.py index b724479a95dee..c4bfffe929970 100644 --- a/vllm/compilation/backends.py +++ b/vllm/compilation/backends.py @@ -31,13 +31,13 @@ def make_compiler(compilation_config: CompilationConfig) -> CompilerInterface: if compilation_config.use_inductor: if envs.VLLM_USE_STANDALONE_COMPILE and is_torch_equal_or_newer( "2.8.0"): - logger.info("Using InductorStandaloneAdaptor") + logger.debug("Using InductorStandaloneAdaptor") return InductorStandaloneAdaptor() else: - logger.info("Using InductorAdaptor") + logger.debug("Using InductorAdaptor") return InductorAdaptor() else: - logger.info("Using EagerAdaptor") + logger.debug("Using EagerAdaptor") return EagerAdaptor() diff --git a/vllm/plugins/__init__.py b/vllm/plugins/__init__.py index 2884cb46fecd7..4cd3552f8a552 100644 --- a/vllm/plugins/__init__.py +++ b/vllm/plugins/__init__.py @@ -10,6 +10,8 @@ import vllm.envs as envs logger = logging.getLogger(__name__) +DEFAULT_PLUGINS_GROUP = 'vllm.general_plugins' + # make sure one process only loads plugins once plugins_loaded = False @@ -28,19 +30,24 @@ def load_plugins_by_group(group: str) -> dict[str, Callable[[], Any]]: logger.debug("No plugins for group %s found.", group) return {} - logger.info("Available plugins for group %s:", group) + # Check if the only discovered plugin is the default one + is_default_group = (group == DEFAULT_PLUGINS_GROUP) + # Use INFO for non-default groups and DEBUG for the default group + log_level = logger.debug if is_default_group else logger.info + + log_level("Available plugins for group %s:", group) for plugin in discovered_plugins: - logger.info("- %s -> %s", plugin.name, plugin.value) + log_level("- %s -> %s", plugin.name, plugin.value) if allowed_plugins is None: - logger.info("All plugins in this group will be loaded. " - "Set `VLLM_PLUGINS` to control which plugins to load.") + log_level("All plugins in this group will be loaded. " + "Set `VLLM_PLUGINS` to control which plugins to load.") plugins = dict[str, Callable[[], Any]]() for plugin in discovered_plugins: if allowed_plugins is None or plugin.name in allowed_plugins: if allowed_plugins is not None: - logger.info("Loading plugin %s", plugin.name) + log_level("Loading plugin %s", plugin.name) try: func = plugin.load() @@ -80,7 +87,7 @@ def load_general_plugins(): # see https://docs.habana.ai/en/latest/PyTorch/Inference_on_PyTorch/Inference_Using_HPU_Graphs.html # noqa: E501 os.environ['PT_HPU_ENABLE_LAZY_COLLECTIVES'] = 'true' - plugins = load_plugins_by_group(group='vllm.general_plugins') + plugins = load_plugins_by_group(group=DEFAULT_PLUGINS_GROUP) # general plugins, we only need to execute the loaded functions for func in plugins.values(): func()