[Docs] Fix warnings in mkdocs build (continued) (#24092)

Signed-off-by: Zerohertz <ohg3417@gmail.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
This commit is contained in:
Hyogeun Oh (오효근) 2025-09-10 22:23:28 +09:00 committed by GitHub
parent c0bd6a684a
commit ccee371e86
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 337 additions and 342 deletions

View File

@ -755,7 +755,7 @@ class FusedMoE(CustomOp):
intermediate_size: Intermediate size of the experts
params_dtype: Data type for the parameters.
reduce_results: Whether to all all_reduce on the output of the layer
renomalize: Whether to renormalize the logits in the fused_moe kernel
renormalize: Whether to renormalize the logits in the fused_moe kernel
quant_config: Quantization configure.
enable_eplb: Whether to enable expert parallelism load balancer.
"""

View File

@ -420,9 +420,8 @@ def shuffle_weights(
Args:
*tensors: Variable number of torch.Tensor objects.
layout: A pair of integers specifying the
block sizes used to divide the tensors during shuffling.
Default is (16, 16).
layout: A pair of integers specifying the block sizes used to divide
the tensors during shuffling. Default is (16, 16).
Returns:
A Tuple of shuffled tensors.

View File

@ -10,7 +10,7 @@ like uniform random routing.
"""
from abc import ABC, abstractmethod
from typing import Optional
from typing import Any, Optional
import torch
@ -50,7 +50,9 @@ class DistributionBasedRouting(RoutingStrategy):
distributions for testing different routing patterns.
"""
def __init__(self, distribution: str = "uniform", **distribution_params):
def __init__(self,
distribution: str = "uniform",
**distribution_params: Any):
"""
Initialize distribution-based routing.
@ -244,7 +246,7 @@ class RoutingSimulator:
cls._routing_strategies[name] = strategy
@classmethod
def get_available_strategies(cls):
def get_available_strategies(cls) -> list[str]:
"""
Get list of available routing strategy names.

View File

@ -202,7 +202,7 @@ class BitBLASLinearMethod(LinearMethodBase):
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
) -> None:
"""Creates quantized weights for use in linear operations.
The function initializes and returns a dictionary containing quantized
@ -211,7 +211,7 @@ class BitBLASLinearMethod(LinearMethodBase):
Args:
input_size_per_partition: The size of the input partition.
output_size_per_partition: The size of the output partition.
output_partition_sizes: List of output partition sizes.
input_size: The total size of the input (unused).
output_size: The total size of the output (unused).
params_dtype:
@ -222,9 +222,9 @@ class BitBLASLinearMethod(LinearMethodBase):
scales ('scales'), and zeros ('zeros').
Raises:
ValueError: If `params_dtype` is not `torch.float16` or if the
input size per partition is not divisible by the group size in
`quant_config`.
ValueError: If `params_dtype` is not `torch.float16` or if the input
size per partition is not divisible by the group size
in `quant_config`.
"""
del input_size, output_size # Unused arguments.
weight_loader = extra_weight_attrs["weight_loader"]

View File

@ -265,9 +265,9 @@ class GPTQBitBLASLinearMethod(LinearMethodBase):
scales ('scales'), and zeros ('zeros').
Raises:
ValueError: If `params_dtype` is not `torch.float16` or
if the input size per partition is not divisible by the
group size in `quant_config`.
ValueError: If `params_dtype` is not `torch.float16` or if the input
size per partition is not divisible by the group size
in `quant_config`.
"""
if params_dtype != torch.float16:
raise ValueError("Parameter data type must be torch.float16, "

View File

@ -46,11 +46,11 @@ def choose_mp_linear_kernel(
performance.
Args:
config (MPLinearLayerConfig): Description of the linear layer to be
implemented.
config (MPLinearLayerConfig): Description of the linear layer to be
implemented.
compute_capability (Optional[int], optional): The compute capability of
the target device, if None uses `current_platform` to get the compute
capability. Defaults to None.
the target device, if None uses `current_platform` to get
the compute capability. Defaults to None.
Raises:
ValueError: If no kernel can implement the given config.

View File

@ -7,7 +7,7 @@
#!/usr/bin/env python3
import abc
import math
from typing import Literal, Optional
from typing import Any, Literal, Optional, Union
import numpy as np
import torch
@ -131,31 +131,31 @@ class ConformerEncoderLayer(nn.Module):
def __init__(
self,
d_model=512,
ext_pw_out_channel=0,
depthwise_seperable_out_channel=256,
depthwise_multiplier=1,
n_head=4,
d_ffn=2048,
ext_pw_kernel_size=1,
kernel_size=3,
dropout_rate=0.1,
causal=False,
batch_norm=False,
activation="relu",
chunk_se=0,
chunk_size=18,
conv_activation="relu",
conv_glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
attention_inner_dim=-1,
attention_glu_type="swish",
activation_checkpointing="",
export=False,
use_pt_scaled_dot_product_attention=False,
d_model: int = 512,
ext_pw_out_channel: int = 0,
depthwise_seperable_out_channel: int = 256,
depthwise_multiplier: int = 1,
n_head: int = 4,
d_ffn: int = 2048,
ext_pw_kernel_size: int = 1,
kernel_size: int = 3,
dropout_rate: float = 0.1,
causal: bool = False,
batch_norm: bool = False,
activation: str = "relu",
chunk_se: int = 0,
chunk_size: int = 18,
conv_activation: str = "relu",
conv_glu_type: str = "sigmoid",
bias_in_glu: bool = True,
linear_glu_in_convm: bool = False,
attention_inner_dim: int = -1,
attention_glu_type: str = "swish",
activation_checkpointing: str = "",
export: bool = False,
use_pt_scaled_dot_product_attention: bool = False,
attn_group_sizes: int = 1,
):
) -> None:
super().__init__()
self.feed_forward_in = FeedForward(
@ -209,24 +209,21 @@ class ConformerEncoderLayer(nn.Module):
def forward(
self,
x,
pos_k,
pos_v,
mask,
x: torch.Tensor,
pos_k: torch.Tensor,
pos_v: torch.Tensor,
mask: torch.Tensor,
relative_attention_bias: Optional[Tensor] = None,
):
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""ConformerEncoder forward.
Args:
x: torch.Tensor
input feature of shape (batch, max_time_in, size)
pos_k: torch.Tensor
positional key embedding.
mask: torch.Tensor
mask for x (batch, max_time_in)
relative_attention_bias: Optional[torch.Tensor]
bias added to attention logits w.r.t. relative positions
(1, n_head, time1, time2)
x: input feature of shape (batch, max_time_in, size)
pos_k: positional key embedding.
pos_v: positional value embedding.
mask: mask for x (batch, max_time_in)
relative_attention_bias: bias added to attention logits w.r.t.
relative positions (1, n_head, time1, time2)
"""
x = x + 0.5 * self.feed_forward_in(x)
norm_x = self.layer_norm_att(x)
@ -323,25 +320,25 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
def __init__(
self,
input_size,
chunk_size,
left_chunk,
attention_dim=256,
attention_heads=4,
input_layer="nemo_conv",
cnn_out=-1,
cnn_layer_norm=False,
time_reduction=4,
dropout_rate=0.0,
padding_idx=-1,
relative_attention_bias_args=None,
positional_dropout_rate=0.0,
nemo_conv_settings=None,
input_size: int,
chunk_size: Union[int, list[int]],
left_chunk: Union[int, list[int]],
attention_dim: int = 256,
attention_heads: int = 4,
input_layer: str = "nemo_conv",
cnn_out: int = -1,
cnn_layer_norm: bool = False,
time_reduction: int = 4,
dropout_rate: float = 0.0,
padding_idx: int = -1,
relative_attention_bias_args: Optional[dict[str, Any]] = None,
positional_dropout_rate: float = 0.0,
nemo_conv_settings: Optional[dict[str, Any]] = None,
conv2d_extra_padding: Literal["feat", "feat_time", "none",
True] = "none",
attention_group_size=1,
encoder_embedding_config=None,
):
attention_group_size: int = 1,
encoder_embedding_config: Optional[dict[str, Any]] = None,
) -> None:
super().__init__()
self.input_size = input_size
self.input_layer = input_layer
@ -399,7 +396,10 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
self.encoder_embedding = MeanVarianceNormLayer(
self.encoder_embedding_config["input_size"])
def compute_lens_change(self, feature_lens):
def compute_lens_change(
self,
feature_lens: Union[int,
torch.Tensor]) -> Union[int, torch.Tensor]:
"""feature_lens: int
return updated feature lens.
@ -433,10 +433,14 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
return ceil_func(feature_lens / self.time_reduction)
@abc.abstractmethod
def forward(self):
def forward(self) -> Any:
"""Abstract forward method implementation."""
def _chunk_size_selection(self, chunk_size=None, left_chunk=None):
def _chunk_size_selection(
self,
chunk_size: Optional[Union[int, list[int]]] = None,
left_chunk: Optional[Union[int,
list[int]]] = None) -> tuple[int, int]:
"""If chunk size is a list, we will randomly select a chunk size."""
if chunk_size is None:
@ -463,7 +467,7 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
return chunk_size_train_eff, left_chunk_train_eff
def _get_embed_class(self, embed):
def _get_embed_class(self, embed: nn.Module) -> nn.Module:
# pylint: disable=protected-access
is_embed_using_act_chkpt = isinstance(embed, CheckpointWrapper)
is_embed_fsdp_wrapped = isinstance(embed, FullyShardedDataParallel)
@ -474,13 +478,17 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
embed_class = embed.module
return embed_class
def _forward_embeddings_core(self, input_tensor, masks):
def _forward_embeddings_core(
self, input_tensor: torch.Tensor,
masks: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
embed_class = self._get_embed_class(self.embed)
assert isinstance(embed_class, NemoConvSubsampling)
input_tensor, masks = self.embed(input_tensor, masks)
return input_tensor, masks
def _position_embedding(self, input_tensor):
def _position_embedding(
self, input_tensor: torch.Tensor
) -> tuple[Optional[torch.Tensor], Optional[torch.Tensor]]:
pos_k = None
pos_v = None
if self.relative_attention_bias_layer is None:
@ -488,7 +496,9 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
input_tensor) # default to add abs sinusoid embedding
return pos_k, pos_v
def _streaming_mask(self, seq_len, batch_size, chunk_size, left_chunk):
def _streaming_mask(self, seq_len: int, batch_size: int,
chunk_size: Union[int, list[int]],
left_chunk: Union[int, list[int]]) -> torch.Tensor:
chunk_size_train_eff, left_chunk_train_eff = \
self._chunk_size_selection(chunk_size, left_chunk)
@ -502,11 +512,17 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
[batch_size, -1, -1]))
return enc_streaming_mask
def forward_embeddings(self,
xs_pad,
masks,
chunk_size_nc=None,
left_chunk_nc=None):
def forward_embeddings(
self,
xs_pad: torch.Tensor,
masks: torch.Tensor,
chunk_size_nc: Optional[Union[int, list[int]]] = None,
left_chunk_nc: Optional[Union[int, list[int]]] = None
) -> Union[tuple[torch.Tensor, Optional[torch.Tensor],
Optional[torch.Tensor], torch.Tensor, torch.Tensor],
tuple[torch.Tensor, Optional[torch.Tensor],
Optional[torch.Tensor], torch.Tensor, torch.Tensor,
torch.Tensor]]:
"""Forwarding the inputs through the top embedding layers
Args:
@ -569,7 +585,7 @@ class TransformerEncoderBase(abc.ABC, nn.Module):
return input_tensor, pos_k, pos_v, hs_mask, masks
return input_tensor, pos_k, pos_v, hs_mask, masks, hs_mask_nc
def get_offset(self):
def get_offset(self) -> int:
"""Returns offset used when retaining inputs for decoding.
This is essentially, how many additional frames have to be added to
@ -605,8 +621,6 @@ class ConformerEncoder(TransformerEncoderBase):
Some examples for the 2 cases:
left_chunk = 6
left_chunk = [12, 9, 6, 3]
left_chunk: int
number of chunks used for masking in streaming mode.
num_lang: int
This parameter is used to store the number of languages in the
lang_dict, only used for multiseed/multilingual models.
@ -751,46 +765,46 @@ class ConformerEncoder(TransformerEncoderBase):
def __init__( # pylint: disable-all
self,
input_size,
chunk_size,
left_chunk,
num_lang=None,
attention_dim=256,
attention_heads=4,
linear_units=2048,
num_blocks=6,
dropout_rate=0.1,
input_layer="nemo_conv",
causal=True,
batch_norm=False,
cnn_out=-1,
cnn_layer_norm=False,
ext_pw_out_channel=0,
ext_pw_kernel_size=1,
depthwise_seperable_out_channel=256,
depthwise_multiplier=1,
chunk_se=0,
kernel_size=3,
activation="relu",
conv_activation="relu",
conv_glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
attention_glu_type="swish",
export=False,
extra_layer_output_idx=-1,
extra_multi_layer_output_idxs=[], # noqa
activation_checkpointing="",
relative_attention_bias_args=None,
time_reduction=4,
use_pt_scaled_dot_product_attention=False,
nemo_conv_settings=None,
input_size: int,
chunk_size: Union[int, list[int]],
left_chunk: Union[int, list[int]],
num_lang: Optional[int] = None,
attention_dim: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
dropout_rate: float = 0.1,
input_layer: str = "nemo_conv",
causal: bool = True,
batch_norm: bool = False,
cnn_out: int = -1,
cnn_layer_norm: bool = False,
ext_pw_out_channel: int = 0,
ext_pw_kernel_size: int = 1,
depthwise_seperable_out_channel: int = 256,
depthwise_multiplier: int = 1,
chunk_se: int = 0,
kernel_size: int = 3,
activation: str = "relu",
conv_activation: str = "relu",
conv_glu_type: str = "sigmoid",
bias_in_glu: bool = True,
linear_glu_in_convm: bool = False,
attention_glu_type: str = "swish",
export: bool = False,
extra_layer_output_idx: int = -1,
extra_multi_layer_output_idxs: list[int] = [], # noqa
activation_checkpointing: str = "",
relative_attention_bias_args: Optional[dict[str, Any]] = None,
time_reduction: int = 4,
use_pt_scaled_dot_product_attention: bool = False,
nemo_conv_settings: Optional[dict[str, Any]] = None,
conv2d_extra_padding: Literal["feat", "feat_time", "none",
True] = "none",
replication_pad_for_subsample_embedding=False,
attention_group_size=1,
encoder_embedding_config=None,
):
replication_pad_for_subsample_embedding: bool = False,
attention_group_size: int = 1,
encoder_embedding_config: Optional[dict[str, Any]] = None,
) -> None:
super().__init__(
input_size,
chunk_size,
@ -852,11 +866,13 @@ class ConformerEncoder(TransformerEncoderBase):
# the device and the needed dtype:
self.register_buffer("dev_type", torch.zeros(()), persistent=False)
def init_relative_attention_bias(self, input_tensor):
def init_relative_attention_bias(
self, input_tensor: torch.Tensor) -> Optional[torch.Tensor]:
if self.relative_attention_bias_layer:
return self.relative_attention_bias_layer(input_tensor)
def calculate_hs_mask(self, xs_pad, device, mask):
def calculate_hs_mask(self, xs_pad: torch.Tensor, device: torch.device,
mask: Optional[torch.Tensor]) -> torch.Tensor:
max_audio_length = xs_pad.shape[1]
batch_size = xs_pad.shape[0]
enc_streaming_mask = self._streaming_mask(max_audio_length, batch_size,
@ -877,7 +893,8 @@ class ConformerEncoder(TransformerEncoderBase):
return pad_mask
@torch.jit.ignore
def forward(self, xs_pad, masks):
def forward(self, xs_pad: torch.Tensor,
masks: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
"""Conformer Forward function
Args:
@ -997,7 +1014,12 @@ class WindowQformer(nn.Module):
if normalize_before else None)
self.window_size = window_size
def forward(self, audio_embed, mask, embed_len=None):
def forward(
self,
audio_embed: torch.Tensor,
mask: Optional[torch.Tensor],
embed_len: Optional[int] = None
) -> tuple[torch.Tensor, Optional[int]]:
"""forward decoder"""
# audio_embed: N x T x D => N x D x T
@ -1042,7 +1064,7 @@ class WindowQformer(nn.Module):
class AudioEmbedding(nn.Module):
"""Image embedding."""
def __init__(self, config: PretrainedConfig, **kwargs) -> None:
def __init__(self, config: PretrainedConfig, **kwargs: Any) -> None:
super().__init__()
self.config = config
# n_embed or hidden_size for text LM
@ -1148,19 +1170,18 @@ class AudioEmbedding(nn.Module):
self.input_embeds = None
self.audio_embed_sizes = None
def set_audio_embeds(self, input_embeds: torch.FloatTensor) -> None:
def set_audio_embeds(self, input_embeds: torch.Tensor) -> None:
self.input_embeds = input_embeds
def set_audio_embed_sizes(self,
audio_embed_sizes: torch.LongTensor) -> None:
def set_audio_embed_sizes(self, audio_embed_sizes: torch.Tensor) -> None:
self.audio_embed_sizes = audio_embed_sizes
def get_audio_features(
self,
input_embeds: torch.FloatTensor,
audio_attention_mask: torch.Tensor = None,
input_embeds: torch.Tensor,
audio_attention_mask: Optional[torch.Tensor] = None,
audio_projection_mode: str = "speech",
) -> torch.FloatTensor:
) -> torch.Tensor:
"""
arguments:
input_embeds: audio features (B, T, D) B: num audios in a sequence
@ -1214,10 +1235,10 @@ class AudioEmbedding(nn.Module):
def forward(
self,
audio_features: torch.FloatTensor,
audio_attention_mask: torch.Tensor = None,
audio_features: torch.Tensor,
audio_attention_mask: Optional[torch.Tensor] = None,
audio_projection_mode: str = "speech",
) -> torch.FloatTensor:
) -> torch.Tensor:
"""
arguments:
audio_features: audio features (T, D)

View File

@ -16,13 +16,13 @@ from torch import Tensor, nn
class BlockBase(nn.Module):
"""Block abstract module"""
def __init__(self, input_size, output_size):
def __init__(self, input_size: int, output_size: int) -> None:
super().__init__()
self.input_size = input_size
self.output_size = output_size
def get_activation(name="relu"):
def get_activation(name: str = "relu") -> torch.nn.Module:
"""Select an activation function by name
Args:
@ -43,15 +43,18 @@ def get_activation(name="relu"):
return nn.Identity()
def adaptive_enc_mask(x_len, chunk_start_idx, left_window=0, right_window=0):
def adaptive_enc_mask(x_len: int,
chunk_start_idx: list[int],
left_window: int = 0,
right_window: int = 0) -> torch.Tensor:
"""
The function is very important for Transformer Transducer Streaming mode
Args:
xs_len (int): sequence length
chunk_start_idx (list): first idx of each chunk, such as [0,18,36,48].
x_len: sequence length
chunk_start_idx: first idx of each chunk, such as [0,18,36,48].
It also supports adaptive chunk size [0,10,15,45]
left_window (int): how many left chunks can be seen
right_window (int): how many right chunks can be seen. It is used for
left_window: how many left chunks can be seen
right_window: how many right chunks can be seen. It is used for
chunk overlap model.
Returns:
mask (torch.Tensor): a mask tensor for streaming model
@ -172,13 +175,13 @@ class GLUPointWiseConv(nn.Module):
def __init__(
self,
input_dim,
output_dim,
kernel_size,
glu_type="sigmoid",
bias_in_glu=True,
causal=False,
):
input_dim: int,
output_dim: int,
kernel_size: int,
glu_type: str = "sigmoid",
bias_in_glu: bool = True,
causal: bool = False,
) -> None:
super().__init__()
self.glu_type = glu_type
@ -216,11 +219,10 @@ class GLUPointWiseConv(nn.Module):
self.b1 = nn.Parameter(torch.zeros(1, output_dim, 1))
self.b2 = nn.Parameter(torch.zeros(1, output_dim, 1))
def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: torch.Tensor
input tensor
x: input tensor
"""
# to be consistent with GLULinear, we assume the input always has the
# #channel (#dim) in the last dimension of the tensor, so need to
@ -272,12 +274,12 @@ class DepthWiseSeperableConv1d(nn.Module):
def __init__(
self,
input_dim,
depthwise_seperable_out_channel,
kernel_size,
depthwise_multiplier,
padding=0,
):
input_dim: int,
depthwise_seperable_out_channel: int,
kernel_size: int,
depthwise_multiplier: int,
padding: int = 0,
) -> None:
super().__init__()
self.dw_conv = nn.Conv1d(
@ -301,12 +303,11 @@ class DepthWiseSeperableConv1d(nn.Module):
self.pw_conv = nn.Identity()
self.depthwise_seperable_out_channel = depthwise_seperable_out_channel
def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
"""
Args:
x: torch.Tensor
input tensor
x: input tensor
"""
x = self.dw_conv(x)
if self.depthwise_seperable_out_channel != 0:
@ -375,23 +376,23 @@ class ConvModule(nn.Module):
def __init__(
self,
input_dim,
ext_pw_out_channel,
depthwise_seperable_out_channel,
ext_pw_kernel_size,
kernel_size,
depthwise_multiplier,
dropout_rate,
causal=False,
batch_norm=False,
chunk_se=0,
chunk_size=18,
activation="relu",
glu_type="sigmoid",
bias_in_glu=True,
linear_glu_in_convm=False,
export=False,
):
input_dim: int,
ext_pw_out_channel: int,
depthwise_seperable_out_channel: int,
ext_pw_kernel_size: int,
kernel_size: int,
depthwise_multiplier: int,
dropout_rate: float,
causal: bool = False,
batch_norm: bool = False,
chunk_se: int = 0,
chunk_size: int = 18,
activation: str = "relu",
glu_type: str = "sigmoid",
bias_in_glu: bool = True,
linear_glu_in_convm: bool = False,
export: bool = False,
) -> None:
super().__init__()
self.layer_norm = nn.LayerNorm(input_dim)
self.input_dim = input_dim
@ -437,7 +438,7 @@ class ConvModule(nn.Module):
self.ln2 = nn.Linear(input_dim * depthwise_multiplier,
input_dim)
def _add_ext_pw_layer(self):
def _add_ext_pw_layer(self) -> None:
"""
This function is an extension of __init__ function
and dedicated to the convolution module creation
@ -497,12 +498,11 @@ class ConvModule(nn.Module):
self.pw_conv_simplify_w = torch.nn.Parameter(torch.ones(3))
self.pw_conv_simplify_b = torch.nn.Parameter(torch.zeros(3))
def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
"""ConvModule Forward.
Args:
x: torch.Tensor
input tensor.
x: input tensor.
"""
x = self.layer_norm(x)
@ -567,21 +567,20 @@ class GLULinear(nn.Module):
def __init__(
self,
input_dim,
output_dim,
glu_type="sigmoid",
bias_in_glu=True,
):
input_dim: int,
output_dim: int,
glu_type: str = "sigmoid",
bias_in_glu: bool = True,
) -> None:
super().__init__()
self.linear = nn.Linear(input_dim, output_dim * 2, bias_in_glu)
self.glu_act = GLU(-1, glu_type)
def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
"""GLULinear forward
Args:
x: torch.Tensor
inpute tensor.
x: input tensor.
"""
x = self.linear(x)
return self.glu_act(x)
@ -609,12 +608,12 @@ class FeedForward(nn.Module):
def __init__(
self,
d_model,
d_inner,
dropout_rate,
activation="sigmoid",
bias_in_glu=True,
):
d_model: int,
d_inner: int,
dropout_rate: float,
activation: str = "sigmoid",
bias_in_glu: bool = True,
) -> None:
super().__init__()
self.d_model = d_model
self.d_inner = d_inner
@ -628,12 +627,11 @@ class FeedForward(nn.Module):
nn.Dropout(dropout_rate),
)
def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
"""FeedForward forward function.
Args:
x: torch.Tensor
input tensor.
x: input tensor.
"""
out = self.net(self.layer_norm(x))
@ -642,14 +640,14 @@ class FeedForward(nn.Module):
#### positional encoding starts here
def _pre_hook(
state_dict,
prefix,
local_metadata,
strict,
missing_keys,
unexpected_keys,
error_msgs,
):
state_dict: dict,
prefix: str,
local_metadata: dict,
strict: bool,
missing_keys: list[str],
unexpected_keys: list[str],
error_msgs: list[str],
) -> None:
"""Perform pre-hook in load_state_dict for backward compatibility.
Note:
@ -708,10 +706,10 @@ class T5RelativeAttentionLogitBias(nn.Module):
"""
def __init__(self,
num_heads,
num_buckets=-1,
max_distance=1000,
symmetric=False):
num_heads: int,
num_buckets: int = -1,
max_distance: int = 1000,
symmetric: bool = False) -> None:
super().__init__()
self.num_heads = num_heads
self.num_buckets = num_buckets
@ -727,7 +725,7 @@ class T5RelativeAttentionLogitBias(nn.Module):
self.num_buckets *= 2
self.bias_values = nn.Embedding(self.num_buckets, self.num_heads)
def forward(self, x):
def forward(self, x: Tensor) -> Tensor:
# instantiate bias compatible with shape of x
maxpos = x.size(1)
context_position = torch.arange(maxpos,
@ -760,7 +758,7 @@ class T5RelativeAttentionLogitBias(nn.Module):
return t5_rel_att_bias
def _bucket_relative_position(self, relative_position):
def _bucket_relative_position(self, relative_position: Tensor) -> Tensor:
# this is a placeholder (isn't tested, likely buggy) using HuggingFace
# implem as a reference this also needs to be extended to support
# asymmetric +/- ve positions
@ -810,7 +808,10 @@ class AbsolutePositionalEncoding(nn.Module):
"""
def __init__(self, d_model, dropout_rate, max_len=5000):
def __init__(self,
d_model: int,
dropout_rate: float,
max_len: int = 5000) -> None:
"""Construct an PositionalEncoding object."""
super().__init__()
self.d_model = d_model
@ -820,11 +821,11 @@ class AbsolutePositionalEncoding(nn.Module):
self.extend_pe(torch.tensor(0.0).expand(1, max_len))
self._register_load_state_dict_pre_hook(_pre_hook)
def extend_pe(self, x):
def extend_pe(self, x: torch.Tensor) -> None:
"""Reset the positional encodings.
Args:
x: torch.Tensor
x: input tensor
"""
if self.pe is not None and self.pe.size(1) >= x.size(1):
if self.pe.dtype != x.dtype or self.pe.device != x.device:
@ -840,15 +841,14 @@ class AbsolutePositionalEncoding(nn.Module):
pe = pe.unsqueeze(0)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, x: torch.Tensor):
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Add positional encoding.
Args:
x: torch.Tensor
Input tensor. shape is (batch, time, ...)
x: Input tensor. shape is (batch, time, ...)
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
Encoded tensor. Its shape is (batch, time, ...)
"""
self.extend_pe(x)
@ -868,7 +868,7 @@ class MeanVarianceNormLayer(nn.Module):
layer input size.
"""
def __init__(self, input_size):
def __init__(self, input_size: int) -> None:
super().__init__()
self.input_size = input_size
self.global_mean = nn.Parameter(torch.zeros(input_size))
@ -878,8 +878,7 @@ class MeanVarianceNormLayer(nn.Module):
"""MeanVarianceNormLayer Forward
Args:
input_: torch.Tensor
input tensor.
input_: input tensor.
"""
return (input_ - self.global_mean) * self.global_invstd
@ -949,7 +948,10 @@ class CausalConv1D(nn.Conv1d):
dtype=dtype,
)
def update_cache(self, x, cache=None):
def update_cache(
self,
x: Tensor,
cache: Optional[Tensor] = None) -> tuple[Tensor, Optional[Tensor]]:
if cache is None:
new_x = F.pad(x, pad=(self._left_padding, self._right_padding))
next_cache = cache
@ -963,7 +965,11 @@ class CausalConv1D(nn.Conv1d):
next_cache = next_cache[:, :, -cache.size(-1):]
return new_x, next_cache
def forward(self, x, cache=None):
def forward(
self,
x: Tensor,
cache: Optional[Tensor] = None
) -> Union[Tensor, tuple[Tensor, Optional[Tensor]]]:
x, cache = self.update_cache(x, cache=cache)
x = super().forward(x)
if cache is None:
@ -1017,8 +1023,8 @@ class CausalConv2D(nn.Conv2d):
def forward(
self,
x,
):
x: Tensor,
) -> Tensor:
x = F.pad(
x,
pad=(self._left_padding, self._right_padding, 0, 0),
@ -1062,16 +1068,16 @@ class NemoConvSubsampling(torch.nn.Module):
"""
def __init__(
self,
feat_in,
feat_out,
subsampling_factor=4,
subsampling="dw_striding",
conv_channels=256,
subsampling_conv_chunking_factor=1,
activation=nn.ReLU(), # noqa: B008
is_causal=False,
):
self,
feat_in: int,
feat_out: int,
subsampling_factor: int = 4,
subsampling: str = "dw_striding",
conv_channels: int = 256,
subsampling_conv_chunking_factor: int = 1,
activation: torch.nn.Module = nn.ReLU(), # noqa: B008
is_causal: bool = False,
) -> None:
super().__init__()
self._subsampling = subsampling
self._conv_channels = conv_channels
@ -1328,28 +1334,25 @@ class NemoConvSubsampling(torch.nn.Module):
self.conv = torch.nn.Sequential(*layers)
def get_sampling_frames(self):
def get_sampling_frames(self) -> list[int]:
return [1, self.subsampling_factor]
def get_streaming_cache_size(self):
def get_streaming_cache_size(self) -> list[int]:
return [0, self.subsampling_factor + 1]
def forward(self, x, mask):
def forward(self, x: Tensor,
mask: Optional[Tensor]) -> tuple[Tensor, Optional[Tensor]]:
"""
Forward method for NeMo subsampling.
Args:
x[Batch, Time, Filters]: torch.Tensor
input tensor
x_mask: torch.Tensor
input mask
x: input tensor
mask: input mask
Returns:
x: torch.Tensor
Resulting tensor from subsampling (B, T //
x: Resulting tensor from subsampling (B, T //
time_reduction_factor, feat_out)
pad_mask: torch.Tensor
tensor of padded hidden state sequences (B, 1, T //
pad_mask: tensor of padded hidden state sequences (B, 1, T //
time_reduction_factor)
"""
x = x.unsqueeze(1) if self.conv2d_subsampling else x.transpose(1, 2)
@ -1403,7 +1406,7 @@ class NemoConvSubsampling(torch.nn.Module):
padding_length.size(0), -1) < padding_length.unsqueeze(1)
return x, pad_mask.unsqueeze(1)
def reset_parameters(self):
def reset_parameters(self) -> None:
# initialize weights
if self._subsampling == "dw_striding":
with torch.no_grad():
@ -1433,7 +1436,7 @@ class NemoConvSubsampling(torch.nn.Module):
torch.nn.init.uniform_(self.out.weight, -fc_scale, fc_scale)
torch.nn.init.uniform_(self.out.bias, -fc_scale, fc_scale)
def conv_split_by_batch(self, x):
def conv_split_by_batch(self, x: Tensor) -> tuple[Tensor, bool]:
"""Tries to split input by batch, run conv and concat results"""
b, _, _, _ = x.size()
if b == 1: # can't split if batch size is 1
@ -1460,7 +1463,7 @@ class NemoConvSubsampling(torch.nn.Module):
True,
)
def conv_split_by_channel(self, x):
def conv_split_by_channel(self, x: Tensor) -> Tensor:
"""For dw convs, tries to split input by time, run conv and concat
results"""
x = self.conv[0](x) # full conv2D
@ -1500,7 +1503,8 @@ class NemoConvSubsampling(torch.nn.Module):
x = self.conv[i * 3 + 4](x) # activation
return x
def channel_chunked_conv(self, conv, chunk_size, x):
def channel_chunked_conv(self, conv: torch.nn.Module, chunk_size: int,
x: Tensor) -> Tensor:
"""Performs channel chunked convolution"""
ind = 0
@ -1541,7 +1545,7 @@ class NemoConvSubsampling(torch.nn.Module):
return torch.cat(out_chunks, 1)
def change_subsampling_conv_chunking_factor(
self, subsampling_conv_chunking_factor: int):
self, subsampling_conv_chunking_factor: int) -> None:
if (subsampling_conv_chunking_factor != -1
and subsampling_conv_chunking_factor != 1
and subsampling_conv_chunking_factor % 2 != 0):
@ -1552,12 +1556,12 @@ class NemoConvSubsampling(torch.nn.Module):
self.subsampling_conv_chunking_factor = subsampling_conv_chunking_factor
def calc_length(lengths,
all_paddings,
kernel_size,
stride,
ceil_mode,
repeat_num=1):
def calc_length(lengths: Tensor,
all_paddings: int,
kernel_size: int,
stride: int,
ceil_mode: bool,
repeat_num: int = 1) -> Tensor:
"""Calculates the output length of a Tensor passed through a convolution or
max pooling layer"""
add_pad: float = all_paddings - kernel_size
@ -1573,11 +1577,11 @@ def calc_length(lengths,
class AttModule(nn.Module):
"""Attention abstraction module"""
def __init__(self):
def __init__(self) -> None:
super().__init__()
self.export_mode = False
def set_export(self, mode=True):
def set_export(self, mode: bool = True) -> None:
"""set the export mode"""
self.export_mode = mode
@ -1591,14 +1595,10 @@ class AttModule(nn.Module):
"""AttModule forward
Args:
x: torch.Tensor
input tensor.
memory: torch.Tensor, optional
memory tensor.
pos_emb: torch.Tensor, optional
positional encoder embedding.
att_mask: torch.Tensor, optional
attention mask tensor.
x: input tensor.
memory: memory tensor.
pos_emb: positional encoder embedding.
att_mask: attention mask tensor.
"""
return x, memory, pos_emb, att_mask
@ -1606,15 +1606,15 @@ class AttModule(nn.Module):
class AttBlock(BlockBase, AttModule):
"""Attention Block module to support both Attention and Block module."""
def memory_dims(self, max_len=False):
def memory_dims(self, max_len: bool = False) -> tuple[int, int]:
"""memory dimensions"""
return (1, self.input_size)
def masked_softmax(
scores,
scores: Tensor,
mask: Optional[Tensor],
):
) -> Tensor:
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, time1, time2)
scores = scores.masked_fill(mask, -torch.inf)
@ -1636,10 +1636,6 @@ class MultiHeadedAttention(nn.Module):
input size features.
dropout_rate: float
dropout rate.
use_LN: bool
apply layer norm or not
dropout_at_output: bool
whether to apply dropout at output
attention_inner_dim: int, optional
the attention dimension used in the class,
it can be different from the input dimension n_feat.
@ -1666,16 +1662,16 @@ class MultiHeadedAttention(nn.Module):
def __init__(
self,
n_head,
n_feat,
dropout_rate,
attention_inner_dim=-1,
glu_type="swish",
bias_in_glu=True,
use_pt_scaled_dot_product_attention=False,
n_value=-1,
n_head: int,
n_feat: int,
dropout_rate: float,
attention_inner_dim: int = -1,
glu_type: str = "swish",
bias_in_glu: bool = True,
use_pt_scaled_dot_product_attention: bool = False,
n_value: int = -1,
group_size: int = 1,
):
) -> None:
super().__init__()
if n_value == -1:
n_value = n_feat
@ -1718,28 +1714,22 @@ class MultiHeadedAttention(nn.Module):
query: Tensor,
key: Tensor,
value: Tensor,
pos_k: Tensor,
pos_v: Tensor,
pos_k: Optional[Tensor],
pos_v: Optional[Tensor],
mask: Optional[Tensor],
relative_attention_bias: Optional[Tensor] = None,
):
) -> Tensor:
"""Compute 'Scaled Dot Product Attention'.
Args:
query: torch.Tensor
query tensor (batch, time1, size)
key: torch.Tensor
key tensor (batch, time2, size)
value: torch.Tensor
value tensor (batch, time1, size)
pos_k: torch.Tensor
key tensor used for relative positional embedding.
pos_v: torch.Tensor
value tensor used for relative positional embedding.
mask: torch.Tensor
mask tensor (batch, time1, time2)
relative_attention_bias: torch.Tensor
bias added to attention logits w.r.t. relative positions
query: query tensor (batch, time1, size)
key: key tensor (batch, time2, size)
value: value tensor (batch, time1, size)
pos_k: key tensor used for relative positional embedding.
pos_v: value tensor used for relative positional embedding.
mask: mask tensor (batch, time1, time2)
relative_attention_bias: bias added to attention logits w.r.t.
relative positions
(1, n_head, time1, time2)
"""
n_batch = query.size(0)
@ -1832,20 +1822,20 @@ class MultiSequential(torch.nn.Sequential):
"""Multi-input multi-output torch.nn.Sequential"""
@torch.jit.ignore
def forward(self, *args):
def forward(self, *args) -> tuple:
"""Forward method implementation."""
for m in self:
args = m(*args)
return args
def get_offset(input_layer: str, time_reduction: int):
def get_offset(input_layer: str, time_reduction: int) -> int:
"""Get an offset. We will use the offset for determining #frames of a
subsampled feature.
Args:
input_layer (str): Type of an input layer
time_reduction (int): time reduction factor for downsampling a feature
input_layer: Type of an input layer
time_reduction: time reduction factor for downsampling a feature
Returns:
int: offset
"""
@ -1858,13 +1848,14 @@ def get_offset(input_layer: str, time_reduction: int):
return 0
def unfold_tensor(xs_pad, max_seq_len):
def unfold_tensor(xs_pad: Tensor, max_seq_len: int) -> Tensor:
"""
For a given tensor with shape of (N, T, D), if sequence length T is
longer than max_seq_len, this function unfold it to a
(NT', max_seq_len, D) where T' is T // max_seq_len.
Args:
xs_pad: N, T, D
xs_pad: input tensor with shape (N, T, D)
max_seq_len: maximum sequence length
"""
_, _, D = xs_pad.shape
xs_pad = xs_pad.transpose(-1, -2) # convert to N, D, T

View File

@ -1193,21 +1193,9 @@ class Qwen2_5_VLForConditionalGeneration(nn.Module, SupportsMultiModal,
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Flattened (concatenated) position ids corresponding to a
batch.
**NOTE**: If mrope is enabled (default setting for Qwen2.5-VL
opensource models), the shape will be `(3, seq_len)`,
batch. **NOTE**: If mrope is enabled (default setting for
Qwen2.5-VL opensource models), the shape will be `(3, seq_len)`,
otherwise it will be `(seq_len,).
pixel_values: Pixel values to be fed to a model.
`None` if no images are passed.
image_grid_thw: Tensor `(n_images, 3)` of image 3D grid in LLM.
`None` if no images are passed.
pixel_values_videos: Pixel values of videos to be fed to a model.
`None` if no videos are passed.
video_grid_thw: Tensor `(n_videos, 3)` of video 3D grid in LLM.
`None` if no videos are passed.
second_per_grid_ts: Tensor `(num_videos)` of video time interval (
in seconds) for each grid along the temporal dimension in the
3D position IDs. `None` if no videos are passed.
"""
if intermediate_tensors is not None:

View File

@ -9,7 +9,7 @@ model alternates between state space model layers and attention-based layers.
"""
from collections.abc import Iterable
from itertools import cycle
from typing import Optional, Union
from typing import Any, Optional, Union
import torch
from torch import nn
@ -528,8 +528,6 @@ class Zamba2MambaDecoderLayer(nn.Module):
hidden_states: Input tensor [batch_size, seq_len, hidden_size]
mamba_cache_params: Parameters for Mamba's state caches
(one for conv, one for ssm)
sequence_idx: Index tensor for identifying sequences in batch
Required for proper chunked processing in prefill
transformer_hidden_states: Optional output from transformer path
Added to input if provided (used in hybrid architecture)
positions: Optional position IDs (unused in Mamba)
@ -591,8 +589,6 @@ class Zamba2HybridLayer(nn.Module):
Args:
shared_transformer: Transformer decoder layer for attention pathway
linear: Linear projection for transformer output before Mamba
mamba: Mamba decoder layer for state space pathway
"""
super().__init__()
self.block_idx = block_idx
@ -630,8 +626,6 @@ class Zamba2HybridLayer(nn.Module):
positions: Position IDs for positional embeddings
mamba_cache_params: Parameters for Mamba's state caches
(one for conv, one for ssm)
sequence_idx: Indices for identifying sequences in batch,
required for proper chunked processing in prefill
Returns:
Output tensor combining transformer and Mamba representations
@ -915,8 +909,8 @@ class Zamba2ForCausalLM(nn.Module, HasInnerState, IsHybrid):
prefix: Optional prefix for parameter names
Raises:
AssertionError: If prefix caching is enabled (not supported by
Mamba)
AssertionError: If prefix caching is enabled
(not supported by Mamba)
"""
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
@ -971,7 +965,7 @@ class Zamba2ForCausalLM(nn.Module, HasInnerState, IsHybrid):
input_ids: torch.Tensor,
positions: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs) -> torch.Tensor:
**kwargs: Any) -> torch.Tensor:
"""Forward pass through the model.
Args:
@ -1012,9 +1006,9 @@ class Zamba2ForCausalLM(nn.Module, HasInnerState, IsHybrid):
return hidden_states
def copy_inputs_before_cuda_graphs(self, input_buffers: dict[str,
torch.Tensor],
**kwargs) -> dict[str, torch.Tensor]:
def copy_inputs_before_cuda_graphs(
self, input_buffers: dict[str, torch.Tensor],
**kwargs: Any) -> dict[str, torch.Tensor]:
"""Copy inputs before CUDA graph capture.
Args: