mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-25 16:14:03 +08:00
Migrate Blip2ImagePixelInputs and Blip2ImageEmbeddingInputs to TensorSchema (#21656)
Signed-off-by: Benji Beck <benjibeck@meta.com>
This commit is contained in:
parent
c657369841
commit
ccf27cc4d4
@ -2,7 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
from collections.abc import Iterable, Mapping, Sequence
|
||||
from typing import Literal, Optional, TypedDict, Union
|
||||
from typing import Annotated, Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
@ -22,6 +22,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
||||
PromptInsertion, PromptUpdate)
|
||||
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
||||
from vllm.sequence import IntermediateTensors
|
||||
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
||||
|
||||
from .blip import BlipVisionModel
|
||||
from .interfaces import (MultiModalEmbeddings, SupportsMultiModal, SupportsPP,
|
||||
@ -34,19 +35,27 @@ from .utils import (AutoWeightsLoader, flatten_bn, init_vllm_registered_model,
|
||||
_IMAGE_TOKEN_ID = 50265
|
||||
|
||||
|
||||
class Blip2ImagePixelInputs(TypedDict):
|
||||
type: Literal["pixel_values"]
|
||||
data: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images, num_channels, height, width)`"""
|
||||
|
||||
|
||||
class Blip2ImageEmbeddingInputs(TypedDict):
|
||||
type: Literal["image_embeds"]
|
||||
data: torch.Tensor
|
||||
"""Shape: `(batch_size * num_images, image_feature_size, hidden_size)`
|
||||
|
||||
`hidden_size` must match the hidden size of language model backbone.
|
||||
class Blip2ImagePixelInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- c: Number of channels (3)
|
||||
- h: Height of each image
|
||||
- w: Width of each image
|
||||
"""
|
||||
type: Literal["pixel_values"]
|
||||
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
|
||||
|
||||
|
||||
class Blip2ImageEmbeddingInputs(TensorSchema):
|
||||
"""
|
||||
Dimensions:
|
||||
- bn: Batch size * number of images
|
||||
- f: Image feature size
|
||||
- h: Hidden size (must match the hidden size of language model backbone)
|
||||
"""
|
||||
type: Literal["image_embeds"]
|
||||
data: Annotated[torch.Tensor, TensorShape("bn", "f", "h")]
|
||||
|
||||
|
||||
Blip2ImageInputs = Union[Blip2ImagePixelInputs, Blip2ImageEmbeddingInputs]
|
||||
@ -551,21 +560,8 @@ class Blip2ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.language_model.make_empty_intermediate_tensors)
|
||||
|
||||
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
||||
h = w = self.config.vision_config.image_size
|
||||
expected_dims = (3, h, w)
|
||||
actual_dims = tuple(data.shape[1:])
|
||||
|
||||
if actual_dims != expected_dims:
|
||||
expected_expr = ("batch_size", *map(str, expected_dims))
|
||||
raise ValueError(
|
||||
f"The expected shape of pixel values is {expected_expr}. "
|
||||
f"You supplied {tuple(data.shape)}.")
|
||||
|
||||
return data
|
||||
|
||||
def _parse_and_validate_image_input(
|
||||
self, **kwargs: object) -> Optional[Blip2ImageInputs]:
|
||||
def _create_image_input(self,
|
||||
**kwargs: object) -> Optional[Blip2ImageInputs]:
|
||||
pixel_values = kwargs.pop("pixel_values", None)
|
||||
image_embeds = kwargs.pop("image_embeds", None)
|
||||
|
||||
@ -573,27 +569,19 @@ class Blip2ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
|
||||
return None
|
||||
|
||||
if pixel_values is not None:
|
||||
if not isinstance(pixel_values, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of pixel values. "
|
||||
f"Got type: {type(pixel_values)}")
|
||||
|
||||
pixel_values = flatten_bn(pixel_values, concat=True)
|
||||
|
||||
return Blip2ImagePixelInputs(
|
||||
type="pixel_values",
|
||||
data=self._validate_pixel_values(pixel_values),
|
||||
)
|
||||
expected_h = expected_w = self.config.vision_config.image_size
|
||||
return Blip2ImagePixelInputs(type="pixel_values",
|
||||
data=flatten_bn(pixel_values,
|
||||
concat=True),
|
||||
resolve_bindings={
|
||||
"h": expected_h,
|
||||
"w": expected_w
|
||||
})
|
||||
|
||||
if image_embeds is not None:
|
||||
if not isinstance(image_embeds, (torch.Tensor, list)):
|
||||
raise ValueError("Incorrect type of image embeddings. "
|
||||
f"Got type: {type(image_embeds)}")
|
||||
|
||||
image_embeds = flatten_bn(image_embeds, concat=True)
|
||||
|
||||
return Blip2ImageEmbeddingInputs(
|
||||
type="image_embeds",
|
||||
data=image_embeds,
|
||||
data=flatten_bn(image_embeds, concat=True),
|
||||
)
|
||||
|
||||
raise AssertionError("This line should be unreachable.")
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user