[Bugfix] Padded Eagle Specdec with Chunked Prefill (#26263)

Signed-off-by: Rémi Delacourt <remi@mistral.ai>
Signed-off-by: Rémi Delacourt <54138269+Flechman@users.noreply.github.com>
Signed-off-by: remi <remi@mistral.ai>
Co-authored-by: Benjamin Chislett <bchislett@nvidia.com>
This commit is contained in:
Rémi Delacourt 2025-11-03 08:22:46 +01:00 committed by GitHub
parent 18961c5ea6
commit cec7c28833
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -202,9 +202,9 @@ def test_speculators_model_integration(
@pytest.mark.parametrize(
["model_setup", "mm_enabled"],
["model_setup", "mm_enabled", "chunked_prefill_enabled"],
[
(("eagle3", "Qwen/Qwen3-8B", "AngelSlim/Qwen3-8B_eagle3", 1), False),
(("eagle3", "Qwen/Qwen3-8B", "AngelSlim/Qwen3-8B_eagle3", 1), False, False),
pytest.param(
(
"eagle3",
@ -213,11 +213,12 @@ def test_speculators_model_integration(
1,
),
False,
False,
marks=pytest.mark.skip(
reason="Skipping due to its head_dim not being a a multiple of 32"
),
),
(
pytest.param(
(
"eagle",
"meta-llama/Llama-3.1-8B-Instruct",
@ -225,7 +226,9 @@ def test_speculators_model_integration(
1,
),
False,
),
True,
marks=large_gpu_mark(min_gb=40),
), # works on 4x H100
(
(
"eagle3",
@ -234,6 +237,7 @@ def test_speculators_model_integration(
1,
),
False,
False,
),
pytest.param(
(
@ -243,6 +247,7 @@ def test_speculators_model_integration(
4,
),
False,
False,
marks=large_gpu_mark(min_gb=80),
), # works on 4x H100
pytest.param(
@ -253,6 +258,7 @@ def test_speculators_model_integration(
4,
),
True,
True,
marks=large_gpu_mark(min_gb=80),
), # works on 4x H100
(
@ -263,6 +269,7 @@ def test_speculators_model_integration(
1,
),
False,
False,
),
],
ids=[
@ -281,6 +288,7 @@ def test_eagle_correctness(
sampling_config: SamplingParams,
model_setup: tuple[str, str, str, int],
mm_enabled: bool,
chunked_prefill_enabled: bool,
attn_backend: str,
):
if attn_backend == "TREE_ATTN":
@ -317,9 +325,13 @@ def test_eagle_correctness(
m.setenv("VLLM_ROCM_USE_AITER", "1")
method, model_name, spec_model_name, tp_size = model_setup
max_model_len = 2048
max_num_batched_tokens = max_model_len
if chunked_prefill_enabled:
max_num_batched_tokens = 128
ref_llm = LLM(
model=model_name, max_model_len=2048, tensor_parallel_size=tp_size
model=model_name, max_model_len=max_model_len, tensor_parallel_size=tp_size
)
ref_outputs = ref_llm.chat(test_prompts, sampling_config)
del ref_llm
@ -334,9 +346,11 @@ def test_eagle_correctness(
"method": method,
"model": spec_model_name,
"num_speculative_tokens": 3,
"max_model_len": 2048,
"max_model_len": max_model_len,
},
max_model_len=2048,
max_model_len=max_model_len,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=chunked_prefill_enabled,
)
spec_outputs = spec_llm.chat(test_prompts, sampling_config)
matches = 0