[Voxtral] Add more tests (#21010)

Signed-off-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
Patrick von Platen 2025-07-16 06:11:49 +02:00 committed by GitHub
parent 76ddeff293
commit cfbcb9ed87
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 125 additions and 8 deletions

View File

@ -804,7 +804,7 @@ class VllmRunner:
def get_inputs(
self,
prompts: Union[list[str], list[torch.Tensor]],
prompts: Union[list[str], list[torch.Tensor], list[int]],
images: Optional[PromptImageInput] = None,
videos: Optional[PromptVideoInput] = None,
audios: Optional[PromptAudioInput] = None,
@ -826,11 +826,16 @@ class VllmRunner:
if audios is not None and (audio := audios[i]) is not None:
multi_modal_data["audio"] = audio
text_prompt_kwargs = {
("prompt" if isinstance(prompt, str) else "prompt_embeds"):
prompt,
text_prompt_kwargs: dict[str, Any] = {
"multi_modal_data": multi_modal_data or None
}
if isinstance(prompt, str):
text_prompt_kwargs["prompt"] = prompt
elif isinstance(prompt, list):
text_prompt_kwargs["prompt_token_ids"] = prompt
else:
text_prompt_kwargs["prompt_embeds"] = prompt
inputs.append(TextPrompt(**text_prompt_kwargs))
return inputs

View File

@ -47,9 +47,6 @@ async def test_basic_audio(mary_had_lamb, model_name):
if model_name.startswith("mistralai"):
server_args += MISTRAL_FORMAT_ARGS
# TODO(PATRICK) - REMOVE AFTER RELEASE
return # skip for now
# Based on https://github.com/openai/openai-cookbook/blob/main/examples/Whisper_prompting_guide.ipynb.
with RemoteOpenAIServer(model_name, server_args) as remote_server:
client = remote_server.get_async_client()

View File

@ -0,0 +1,115 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import pytest
import pytest_asyncio
from mistral_common.audio import Audio
from mistral_common.protocol.instruct.messages import (AudioChunk, RawAudio,
TextChunk, UserMessage)
from vllm.transformers_utils.tokenizer import MistralTokenizer
from ....conftest import AudioTestAssets
from ....utils import RemoteOpenAIServer
from .test_ultravox import MULTI_AUDIO_PROMPT, run_multi_audio_test
MODEL_NAME = "mistralai/Voxtral-Mini-3B-2507"
MISTRAL_FORMAT_ARGS = [
"--tokenizer_mode", "mistral", "--config_format", "mistral",
"--load_format", "mistral"
]
@pytest.fixture()
def server(request, audio_assets: AudioTestAssets):
args = [
"--enforce-eager",
"--limit-mm-per-prompt",
json.dumps({"audio": len(audio_assets)}),
] + MISTRAL_FORMAT_ARGS
with RemoteOpenAIServer(MODEL_NAME,
args,
env_dict={"VLLM_AUDIO_FETCH_TIMEOUT":
"30"}) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
def _get_prompt(audio_assets, question):
tokenizer = MistralTokenizer.from_pretrained(MODEL_NAME)
audios = [
Audio.from_file(str(audio_assets[i].get_local_path()), strict=False)
for i in range(len(audio_assets))
]
audio_chunks = [
AudioChunk(input_audio=RawAudio.from_audio(audio)) for audio in audios
]
text_chunk = TextChunk(text=question)
messages = [UserMessage(content=[*audio_chunks, text_chunk]).to_openai()]
return tokenizer.apply_chat_template(messages=messages)
@pytest.mark.core_model
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models_with_multiple_audios(vllm_runner,
audio_assets: AudioTestAssets, dtype: str,
max_tokens: int,
num_logprobs: int) -> None:
vllm_prompt = _get_prompt(audio_assets, MULTI_AUDIO_PROMPT)
run_multi_audio_test(
vllm_runner,
[(vllm_prompt, [audio.audio_and_sample_rate
for audio in audio_assets])],
MODEL_NAME,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tokenizer_mode="mistral",
)
@pytest.mark.asyncio
async def test_online_serving(client, audio_assets: AudioTestAssets):
"""Exercises online serving with/without chunked prefill enabled."""
def asset_to_chunk(asset):
audio = Audio.from_file(str(asset.get_local_path()), strict=False)
audio.format = "wav"
audio_dict = AudioChunk.from_audio(audio).to_openai()
return audio_dict
audio_chunks = [asset_to_chunk(asset) for asset in audio_assets]
messages = [{
"role":
"user",
"content": [
*audio_chunks,
{
"type":
"text",
"text":
f"What's happening in these {len(audio_assets)} audio clips?"
},
],
}]
chat_completion = await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
max_tokens=10)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"

View File

@ -440,7 +440,7 @@ _MULTIMODAL_EXAMPLE_MODELS = {
tokenizer="Isotr0py/Florence-2-tokenizer", # noqa: E501
trust_remote_code=True), # noqa: E501
"MllamaForConditionalGeneration": _HfExamplesInfo("meta-llama/Llama-3.2-11B-Vision-Instruct"), # noqa: E501
"VoxtralForConditionalGeneration": _HfExamplesInfo("mistralai/Voxtral-Mini-3B-2507", is_available_online=False, tokenizer_mode="mistral"), # noqa: E501
"VoxtralForConditionalGeneration": _HfExamplesInfo("mistralai/Voxtral-Mini-3B-2507", tokenizer_mode="mistral"), # noqa: E501
"WhisperForConditionalGeneration": _HfExamplesInfo("openai/whisper-large-v3"), # noqa: E501
# [Cross-encoder]