[Benchmark] Add single turn MTBench to Serving Bench (#17202)

This commit is contained in:
Ekagra Ranjan 2025-04-28 19:46:15 -04:00 committed by GitHub
parent 8fc88d63f1
commit cfe4532093
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 60 additions and 3 deletions

View File

@ -771,6 +771,60 @@ class InstructCoderDataset(HuggingFaceDataset):
return sampled_requests
# -----------------------------------------------------------------------------
# MT-Bench Dataset Implementation
# -----------------------------------------------------------------------------
class MTBenchDataset(HuggingFaceDataset):
"""
MT-Bench Dataset.
https://huggingface.co/datasets/philschmid/mt-bench
We create a single turn dataset for MT-Bench.
This is similar to Spec decoding benchmark setup in vLLM
https://github.com/vllm-project/vllm/blob/9d98ab5ec/examples/offline_inference/eagle.py#L14-L18
""" # noqa: E501
DEFAULT_OUTPUT_LEN = 256 # avg len used in SD bench in vLLM
SUPPORTED_DATASET_PATHS = {
"philschmid/mt-bench",
}
def sample(self,
tokenizer: PreTrainedTokenizerBase,
num_requests: int,
output_len: Optional[int] = None,
enable_multimodal_chat: bool = False,
**kwargs) -> list:
output_len = (output_len
if output_len is not None else self.DEFAULT_OUTPUT_LEN)
sampled_requests = []
for item in self.data:
if len(sampled_requests) >= num_requests:
break
prompt = item['turns'][0]
# apply template
prompt = tokenizer.apply_chat_template([{
"role": "user",
"content": prompt
}],
add_generation_prompt=True,
tokenize=False)
prompt_len = len(tokenizer(prompt).input_ids)
sampled_requests.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=output_len,
))
self.maybe_oversample_requests(sampled_requests, num_requests)
return sampled_requests
# -----------------------------------------------------------------------------
# AIMO Dataset Implementation
# -----------------------------------------------------------------------------

View File

@ -52,9 +52,9 @@ except ImportError:
from benchmark_dataset import (AIMODataset, ASRDataset, BurstGPTDataset,
ConversationDataset, HuggingFaceDataset,
InstructCoderDataset, RandomDataset,
SampleRequest, ShareGPTDataset, SonnetDataset,
VisionArenaDataset)
InstructCoderDataset, MTBenchDataset,
RandomDataset, SampleRequest, ShareGPTDataset,
SonnetDataset, VisionArenaDataset)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -595,6 +595,9 @@ def main(args: argparse.Namespace):
elif args.dataset_path in InstructCoderDataset.SUPPORTED_DATASET_PATHS:
dataset_class = InstructCoderDataset
args.hf_split = "train"
elif args.dataset_path in MTBenchDataset.SUPPORTED_DATASET_PATHS:
dataset_class = MTBenchDataset
args.hf_split = "train"
elif args.dataset_path in ConversationDataset.SUPPORTED_DATASET_PATHS:
dataset_class = ConversationDataset
elif args.dataset_path in AIMODataset.SUPPORTED_DATASET_PATHS: