mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-25 21:08:53 +08:00
Update deploying_with_k8s.md with AMD ROCm GPU example (#11465)
Signed-off-by: Alex He <alehe@amd.com> Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
This commit is contained in:
parent
6c6f7fe8a8
commit
d003f3ea39
@ -47,7 +47,11 @@ data:
|
||||
token: "REPLACE_WITH_TOKEN"
|
||||
```
|
||||
|
||||
Create a deployment file for vLLM to run the model server. The following example deploys the `Mistral-7B-Instruct-v0.3` model:
|
||||
Next to create the deployment file for vLLM to run the model server. The following example deploys the `Mistral-7B-Instruct-v0.3` model.
|
||||
|
||||
Here are two examples for using NVIDIA GPU and AMD GPU.
|
||||
|
||||
- NVIDIA GPU
|
||||
|
||||
```yaml
|
||||
apiVersion: apps/v1
|
||||
@ -119,6 +123,79 @@ spec:
|
||||
periodSeconds: 5
|
||||
```
|
||||
|
||||
- AMD GPU
|
||||
|
||||
You can refer to the `deployment.yaml` below if using AMD ROCm GPU like MI300X.
|
||||
|
||||
```yaml
|
||||
apiVersion: apps/v1
|
||||
kind: Deployment
|
||||
metadata:
|
||||
name: mistral-7b
|
||||
namespace: default
|
||||
labels:
|
||||
app: mistral-7b
|
||||
spec:
|
||||
replicas: 1
|
||||
selector:
|
||||
matchLabels:
|
||||
app: mistral-7b
|
||||
template:
|
||||
metadata:
|
||||
labels:
|
||||
app: mistral-7b
|
||||
spec:
|
||||
volumes:
|
||||
# PVC
|
||||
- name: cache-volume
|
||||
persistentVolumeClaim:
|
||||
claimName: mistral-7b
|
||||
# vLLM needs to access the host's shared memory for tensor parallel inference.
|
||||
- name: shm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: "8Gi"
|
||||
hostNetwork: true
|
||||
hostIPC: true
|
||||
containers:
|
||||
- name: mistral-7b
|
||||
image: rocm/vllm:rocm6.2_mi300_ubuntu20.04_py3.9_vllm_0.6.4
|
||||
securityContext:
|
||||
seccompProfile:
|
||||
type: Unconfined
|
||||
runAsGroup: 44
|
||||
capabilities:
|
||||
add:
|
||||
- SYS_PTRACE
|
||||
command: ["/bin/sh", "-c"]
|
||||
args: [
|
||||
"vllm serve mistralai/Mistral-7B-v0.3 --port 8000 --trust-remote-code --enable-chunked-prefill --max_num_batched_tokens 1024"
|
||||
]
|
||||
env:
|
||||
- name: HUGGING_FACE_HUB_TOKEN
|
||||
valueFrom:
|
||||
secretKeyRef:
|
||||
name: hf-token-secret
|
||||
key: token
|
||||
ports:
|
||||
- containerPort: 8000
|
||||
resources:
|
||||
limits:
|
||||
cpu: "10"
|
||||
memory: 20G
|
||||
amd.com/gpu: "1"
|
||||
requests:
|
||||
cpu: "6"
|
||||
memory: 6G
|
||||
amd.com/gpu: "1"
|
||||
volumeMounts:
|
||||
- name: cache-volume
|
||||
mountPath: /root/.cache/huggingface
|
||||
- name: shm
|
||||
mountPath: /dev/shm
|
||||
```
|
||||
You can get the full example with steps and sample yaml files from <https://github.com/ROCm/k8s-device-plugin/tree/master/example/vllm-serve>.
|
||||
|
||||
2. **Create a Kubernetes Service for vLLM**
|
||||
|
||||
Next, create a Kubernetes Service file to expose the `mistral-7b` deployment:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user