Add Olmo 3 reasoning parser (#26054)

Signed-off-by: Luca Soldaini <luca@soldaini.net>
This commit is contained in:
Luca Soldaini 2025-10-04 02:48:29 -07:00 committed by GitHub
parent 1838cd4860
commit d0df145c2a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 453 additions and 0 deletions

View File

@ -0,0 +1,157 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from transformers import AutoTokenizer
from tests.reasoning.utils import run_reasoning_extraction
from vllm.reasoning import ReasoningParser, ReasoningParserManager
parser_name = "olmo3"
START_REASONING = "<think>"
END_REASONING = "</think>"
NO_REASONING = {
"output": f"{START_REASONING}{END_REASONING}No thoughts, head empty!",
"reasoning_content": None,
"content": "No thoughts, head empty!",
}
NO_REASONING_WITH_NEWLINE = {
"output":
f"{START_REASONING}\n{END_REASONING}\n\nNo thoughts, head empty!",
"reasoning_content": "\n",
"content": "\n\nNo thoughts, head empty!",
}
SIMPLE_REASONING = {
"output":
f"{START_REASONING}This is a reasoning section{END_REASONING}This is the rest", # noqa: E501
"reasoning_content": "This is a reasoning section",
"content": "This is the rest",
}
SIMPLE_REASONING_WITH_NEWLINE = {
"output":
f"{START_REASONING} Look!\n\nI'm thinking...{END_REASONING}\nThis is the rest", # noqa: E501
"reasoning_content": " Look!\n\nI'm thinking...",
"content": "\nThis is the rest",
}
SIMPLE_REASONING_WITH_MULTIPLE_NEWLINES = {
"output":
f"{START_REASONING}\nLook!\nI'm thinking...\n\n{END_REASONING}\n\n\nThis is the rest", # noqa: E501
"reasoning_content": "\nLook!\nI'm thinking...\n\n",
"content": "\n\n\nThis is the rest",
}
NO_REASONING_ONLY_END_THINK = {
"output": f"{END_REASONING}\n\nNo thoughts, head empty!",
"reasoning_content": None,
"content": "\n\nNo thoughts, head empty!",
}
REASONING_ONLY_END_THINK = {
"output":
f"The user is asking me not to think.{END_REASONING}No thoughts!",
"reasoning_content": "The user is asking me not to think.",
"content": "No thoughts!",
}
TEST_CASES = [
pytest.param(
False, # not streaming
NO_REASONING,
id="no_reasoning",
),
pytest.param(
False, # not streaming
NO_REASONING_WITH_NEWLINE,
id="no_reasoning_with_newline",
),
pytest.param(
False, # not streaming
SIMPLE_REASONING,
id="simple_reasoning",
),
pytest.param(
False, # not streaming
SIMPLE_REASONING_WITH_NEWLINE,
id="simple_reasoning_with_newline",
),
pytest.param(
True, # enable streaming
SIMPLE_REASONING_WITH_MULTIPLE_NEWLINES,
id="simple_reasoning_with_multiple_newlines",
),
pytest.param(
False, # not streaming
NO_REASONING_ONLY_END_THINK,
id="no_reasoning_only_end_think",
),
pytest.param(
False, # not streaming
REASONING_ONLY_END_THINK,
id="yes_reasoning_only_end_think",
),
pytest.param(
True, # enable streaming
NO_REASONING,
id="no_reasoning_streaming",
),
pytest.param(
True, # enable streaming
NO_REASONING_WITH_NEWLINE,
id="no_reasoning_with_newline_streaming",
),
pytest.param(
True, # enable streaming
SIMPLE_REASONING,
id="simple_reasoning_streaming",
),
pytest.param(
True, # enable streaming
SIMPLE_REASONING_WITH_NEWLINE,
id="simple_reasoning_with_newline_streaming",
),
pytest.param(
True, # enable streaming
SIMPLE_REASONING_WITH_MULTIPLE_NEWLINES,
id="simple_reasoning_with_multiple_newlines_streaming",
),
pytest.param(
True, # enable streaming
NO_REASONING_ONLY_END_THINK,
id="no_reasoning_only_end_think_streaming",
),
pytest.param(
True, # enable streaming
REASONING_ONLY_END_THINK,
id="yes_reasoning_only_end_think_streaming",
),
]
# Global tokenizer initialization to avoid repeated loading
tokenizer = AutoTokenizer.from_pretrained("allenai/dolma2-tokenizer")
@pytest.mark.parametrize("streaming, param_dict", TEST_CASES)
def test_reasoning(
streaming: bool,
param_dict: dict[str, str],
):
output = tokenizer.tokenize(param_dict["output"])
# decode everything to tokens
model_output: list[str] = [
tokenizer.convert_tokens_to_string([token]) for token in output
]
parser_cls = ReasoningParserManager.get_reasoning_parser(parser_name)
parser: ReasoningParser = parser_cls(tokenizer)
reasoning, content = run_reasoning_extraction(reasoning_parser=parser,
model_output=model_output,
streaming=streaming)
assert reasoning == param_dict["reasoning_content"]
assert content == param_dict["content"]

View File

@ -9,6 +9,7 @@ from .gptoss_reasoning_parser import GptOssReasoningParser
from .granite_reasoning_parser import GraniteReasoningParser
from .hunyuan_a13b_reasoning_parser import HunyuanA13BReasoningParser
from .mistral_reasoning_parser import MistralReasoningParser
from .olmo3_reasoning_parser import Olmo3ReasoningParser
from .qwen3_reasoning_parser import Qwen3ReasoningParser
from .seedoss_reasoning_parser import SeedOSSReasoningParser
from .step3_reasoning_parser import Step3ReasoningParser
@ -23,6 +24,7 @@ __all__ = [
"Qwen3ReasoningParser",
"Glm4MoeModelReasoningParser",
"MistralReasoningParser",
"Olmo3ReasoningParser",
"Step3ReasoningParser",
"GptOssReasoningParser",
"SeedOSSReasoningParser",

View File

@ -0,0 +1,294 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses as dt
import enum
from collections.abc import Sequence
from typing import TYPE_CHECKING, Optional, Union
import regex as re
if TYPE_CHECKING:
from vllm.transformers_utils.tokenizer import AnyTokenizer
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest,
DeltaMessage, ResponsesRequest)
from vllm.logger import init_logger
from vllm.reasoning import ReasoningParser, ReasoningParserManager
logger = init_logger(__name__)
class Olmo3ReasoningState(enum.Enum):
REASONING = 1
CONTENT = 2
@dt.dataclass(frozen=True)
class Indices:
start: int
end: int
def __len__(self):
return self.end - self.start
def string_overlap(a: str,
b: str) -> tuple[Optional[Indices], Optional[Indices]]:
"""
Find the longest overlap where the end of string a matches the start
of string b.
Args:
a: First string
b: Second string
Returns:
Tuple of IndicesTuples representing the overlapping portions in each
string, or a tuple of None if no overlap exists
"""
# swap so a is always the shorter string
a, b, swap = (a, b, False) if len(a) < len(b) else (b, a, True)
# first check: is a fully contained in b?
if a in b:
ind_a = Indices(0, len(a))
ind_b = Indices(b.index(a), b.index(a) + len(a))
return (ind_b, ind_a) if swap else (ind_a, ind_b)
# second check: does the end of a overlap with the
# beginning of b?
for i in range(len(a) - 1, 0, -1):
if a[-i:] == b[:i]:
ind_a = Indices(len(a) - i, len(a))
ind_b = Indices(0, i)
return (ind_b, ind_a) if swap else (ind_a, ind_b)
# third check: does the beginning of a overlap with
# the end of b?
for i in range(len(a) - 1, 0, -1):
if b[-i:] == a[:i]:
ind_a = Indices(0, i)
ind_b = Indices(len(b) - i, len(b))
return (ind_b, ind_a) if swap else (ind_a, ind_b)
return None, None
@dt.dataclass
class Olmo3ReasoningBuffer:
think_start: str = "<think>"
think_end: str = "</think>"
buffer: str = ""
# we start in reasoning state to support cases where we hardcode
# <think> as the start of the reasoning block.
# In those cases, the only token we will see is </think>, which
# is when we switch to content state.
state: Olmo3ReasoningState = Olmo3ReasoningState.REASONING
def process_buffer(self) -> Optional[DeltaMessage]:
start_think_idx = self.buffer.find(self.think_start)
if start_think_idx >= 0:
self.state = Olmo3ReasoningState.REASONING
pretext, self.buffer = (
self.buffer[:start_think_idx],
self.buffer[start_think_idx + len(self.think_start):],
)
if start_think_idx > 0:
# this covers the case there's content before
# the start of the reasoning block
return DeltaMessage(content=pretext)
end_think_idx = self.buffer.rfind(self.think_end)
if end_think_idx >= 0:
self.state = Olmo3ReasoningState.CONTENT
pretext, self.buffer = (
self.buffer[:end_think_idx],
self.buffer[end_think_idx + len(self.think_end):],
)
if end_think_idx > 0:
# this covers the case there's content before
# the end of the reasoning block
return DeltaMessage(reasoning_content=pretext)
if self.state == Olmo3ReasoningState.REASONING:
# we are inside reasoning block, return and empty
# the text buffer
(
text_buffer,
self.buffer,
) = self.buffer, ""
return DeltaMessage(reasoning_content=text_buffer)
if self.state == Olmo3ReasoningState.CONTENT:
# we are outside reasoning block, return and empty
# the text buffer
(
text_buffer,
self.buffer,
) = self.buffer, ""
return DeltaMessage(content=text_buffer)
# nothing to return unless we are in reasoning or content state
return None
def __len__(self):
# is the length of the text buffer
return len(self.buffer)
def add_text(self, delta_text: str) -> Optional[DeltaMessage]:
# we start by adding the delta text to the buffer
self.buffer += delta_text
# setting this to empty before starting
delta_message: Optional[DeltaMessage] = None
# we start by computing the overlap between the delta_text
# and start/end of think tokens.
_, overlap_think_start = string_overlap(delta_text, self.think_start)
_, overlap_think_end = string_overlap(delta_text, self.think_end)
partial_overlap_start = overlap_think_start is not None and len(
overlap_think_start) < len(self.think_start)
partial_overlap_end = overlap_think_end is not None and len(
overlap_think_end) < len(self.think_end)
if (partial_overlap_start and self.think_start in self.buffer
and not partial_overlap_end):
# we can only process the buffer if partial overlap
# is the last part of think token (thus causing
# text_buffer to contain the start of think token)
# and there are no partial overlaps with end think
delta_message = self.process_buffer()
elif partial_overlap_end and self.think_end in self.buffer:
# same as before (partial overlap only allowed)
# if the buffer contains the end think token,
# but we don't have to check for partial overlap
# with start think token because they are handled
# by the previous condition
delta_message = self.process_buffer()
elif partial_overlap_start or partial_overlap_end:
# in general, if there are overlaps, we don't
# process the buffer because we want to wait until
# the think token is fully completed.
return None
else:
# we process the buffer as normal
delta_message = self.process_buffer()
return delta_message
@ReasoningParserManager.register_module("olmo3")
class Olmo3ReasoningParser(ReasoningParser):
"""
Reasoning parser for Olmo 3 model
Olmo3ReasoningParser
This class implements a reasoning parser specifically designed for the
Olmo 3 family of models. Olmo 3 models do not use special tokens to
indicate reasoning; rather, reasoning trace is wrapped in `<think>` and
`</think>`, which are tokenized using standard vocabulary entries.
Because of this, the parser operates in string space, accumulating the
characters in a buffer until it sees `<think>` or `</think>`. tokens
to switch modes.
Key Features:
- For non-stream output, Recognizes and extracts reasoning (text
bracketed by `<think>` and `</think>`) and content (everything
after the first `</think>`).
- For stream process, it uses a buffer to accumulate delta text,
and output progressive delta messages as soon as thinking starts
or ends.
- For reliability, some Olmo 3 models may hardcode the first
`<think>` token is the input text (similar to Deepseek R1,
or reasoning-only Qwen models). To support such variants, the
parser can optionally work in cases where the first `<think>`
token is missing from generation.
"""
def __init__(self, tokenizer: "AnyTokenizer", *args, **kwargs):
super().__init__(tokenizer, *args, **kwargs)
self.think_start = r"<think>"
self.think_end = r"</think>"
# notice that the first think is optional; this allows template to
# work in cases when we hardcode a <think> at the beginning of the
# reasoning template.
reasoning_expr = (rf"^(?:{self.think_start})?(?P<reasoning>.*?)" +
rf"{self.think_end}(?P<content>.*)$")
self.reasoning_regex = re.compile(reasoning_expr, re.DOTALL)
self.buffer = Olmo3ReasoningBuffer(think_start=self.think_start,
think_end=self.think_end)
def is_reasoning_end(self, input_ids: list[int]) -> bool:
text = self.model_tokenizer.decode(input_ids)
return self.think_end in text
def extract_content_ids(self, input_ids: list[int]) -> list[int]:
# for Olmo 3 streaming reason parsing, the stream parse
# will call first, and the same token will be called in
# is_reasoning_end and extract_content_ids
# this id is not part of content, so just return [] here.
return []
def extract_reasoning_content(
self,
model_output: str,
request: Union[ChatCompletionRequest, ResponsesRequest],
) -> tuple[Optional[str], Optional[str]]:
"""Extract the reasoning content & content sections, respectively.
If the sequence doesn't match what we expect, i.e., the model generates
something else, all content is considered non-reasoning content.
Args:
model_output (str): Output of the model to be parsed.
request (ChatCompletionRequest | ResponsesRequest): Request being
processed.
Returns:
tuple[Optional[str], Optional[str]]: Tuple pair containing the
reasoning content and non-reasoning content.
"""
re_match = self.reasoning_regex.match(model_output)
if re_match:
reasoning_content = re_match.group("reasoning") or None
content = re_match.group("content") or None
return reasoning_content, content
# no reasoning content
return None, model_output
def extract_reasoning_content_streaming(
self,
previous_text: str,
current_text: str,
delta_text: str,
previous_token_ids: Sequence[int],
current_token_ids: Sequence[int],
delta_token_ids: Sequence[int],
) -> Union[DeltaMessage, None]:
"""Extract content using token ID sequence state machine"""
delta_message = self.buffer.add_text(delta_text)
if (delta_message is None
and self.buffer.think_end in self.buffer.buffer):
# this is a bit hacky, but, because of how the buffer is
# constructed, if the last delta_text contains characters that
# marks the end of thinking tokens, then messages in the buffer
# would never be processed because we get no other turn. To get
# around that, we check if the text buffer contains the end of
# thinking tokens, and, if so, we reprocess the buffer again.
delta_message = self.buffer.process_buffer()
return delta_message