mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-01 09:41:48 +08:00
Signed-off-by: Han <zh950713@gmail.com>
This commit is contained in:
parent
b34f33438a
commit
d41faaf9df
@ -54,6 +54,9 @@ class Worker(WorkerBase):
|
||||
from vllm.utils import init_cached_hf_modules
|
||||
init_cached_hf_modules()
|
||||
|
||||
# Buffers saved before sleep
|
||||
self._sleep_saved_buffers: dict[str, torch.Tensor] = {}
|
||||
|
||||
# Torch profiler. Enabled and configured through env vars:
|
||||
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
|
||||
if envs.VLLM_TORCH_PROFILER_DIR:
|
||||
@ -73,6 +76,15 @@ class Worker(WorkerBase):
|
||||
|
||||
def sleep(self, level: int = 1) -> None:
|
||||
free_bytes_before_sleep = torch.cuda.mem_get_info()[0]
|
||||
|
||||
# Save the buffers before level 2 sleep
|
||||
if level == 2:
|
||||
model = self.model_runner.model
|
||||
self._sleep_saved_buffers = {
|
||||
name: buffer.cpu().clone()
|
||||
for name, buffer in model.named_buffers()
|
||||
}
|
||||
|
||||
allocator = CuMemAllocator.get_instance()
|
||||
allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
|
||||
free_bytes_after_sleep, total = torch.cuda.mem_get_info()
|
||||
@ -88,6 +100,14 @@ class Worker(WorkerBase):
|
||||
allocator = CuMemAllocator.get_instance()
|
||||
allocator.wake_up(tags)
|
||||
|
||||
# Restore the buffers after level 2 sleep
|
||||
if len(self._sleep_saved_buffers):
|
||||
model = self.model_runner.model
|
||||
for name, buffer in model.named_buffers():
|
||||
if name in self._sleep_saved_buffers:
|
||||
buffer.data.copy_(self._sleep_saved_buffers[name].data)
|
||||
self._sleep_saved_buffers = {}
|
||||
|
||||
def init_device(self):
|
||||
if self.device_config.device.type == "cuda":
|
||||
# torch.distributed.all_reduce does not free the input tensor until
|
||||
|
||||
@ -95,6 +95,9 @@ class Worker(LocalOrDistributedWorkerBase):
|
||||
self.gpu_cache: Optional[List[List[torch.Tensor]]] = None
|
||||
self._seq_group_metadata_cache: Dict[str, SequenceGroupMetadata] = {}
|
||||
|
||||
# Buffers saved before sleep
|
||||
self._sleep_saved_buffers: Dict[str, torch.Tensor] = {}
|
||||
|
||||
# Torch profiler. Enabled and configured through env vars:
|
||||
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
|
||||
if envs.VLLM_TORCH_PROFILER_DIR:
|
||||
@ -124,6 +127,15 @@ class Worker(LocalOrDistributedWorkerBase):
|
||||
|
||||
def sleep(self, level: int = 1) -> None:
|
||||
free_bytes_before_sleep = torch.cuda.mem_get_info()[0]
|
||||
|
||||
# Save the buffers before level 2 sleep
|
||||
if level == 2:
|
||||
model = self.model_runner.model
|
||||
self._sleep_saved_buffers = {
|
||||
name: buffer.cpu().clone()
|
||||
for name, buffer in model.named_buffers()
|
||||
}
|
||||
|
||||
allocator = CuMemAllocator.get_instance()
|
||||
allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
|
||||
free_bytes_after_sleep, total = torch.cuda.mem_get_info()
|
||||
@ -139,6 +151,14 @@ class Worker(LocalOrDistributedWorkerBase):
|
||||
allocator = CuMemAllocator.get_instance()
|
||||
allocator.wake_up(tags=tags)
|
||||
|
||||
# Restore the buffers after level 2 sleep
|
||||
if len(self._sleep_saved_buffers):
|
||||
model = self.model_runner.model
|
||||
for name, buffer in model.named_buffers():
|
||||
if name in self._sleep_saved_buffers:
|
||||
buffer.data.copy_(self._sleep_saved_buffers[name].data)
|
||||
self._sleep_saved_buffers = {}
|
||||
|
||||
def init_device(self) -> None:
|
||||
if self.device_config.device.type == "cuda":
|
||||
# torch.distributed.all_reduce does not free the input tensor until
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user