fix biachuan-7b tp (#598)

Co-authored-by: wq.chu <wq.chu@tianrang-inc.com>
This commit is contained in:
Qing 2023-08-02 06:41:36 +08:00 committed by GitHub
parent aa39e42c5a
commit d4c7755ca8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -251,8 +251,8 @@ class BaiChuanForCausalLM(nn.Module):
return next_tokens
_column_parallel_weights = [
"embed_tokens.weight", "lm_head.weight", "W_pack.weight",
"gate_proj.weight", "up_proj.weight"
"embed_tokens.weight",
"lm_head.weight",
]
_row_parallel_weights = ["o_proj.weight", "down_proj.weight"]
@ -260,7 +260,8 @@ class BaiChuanForCausalLM(nn.Module):
model_name_or_path: str,
cache_dir: Optional[str] = None,
use_np_cache: bool = False):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
tp_world_size = get_tensor_model_parallel_world_size()
tp_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, loaded_weight in hf_model_weights_iterator(
@ -268,15 +269,37 @@ class BaiChuanForCausalLM(nn.Module):
if "rotary_emb.inv_freq" in name:
continue
if "embed_tokens" in name or "lm_head" in name:
# Consider padding in the vocab size.
param = state_dict[name]
padded_vocab_size = param.shape[0] * tp_world_size
num_extra_rows = padded_vocab_size - self.config.vocab_size
extra_rows = torch.empty(num_extra_rows,
loaded_weight.shape[1])
extra_rows = extra_rows.to(loaded_weight)
loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
if "W_pack" in name:
total_num_heads = self.config.num_attention_heads
hidden_size = self.config.hidden_size
head_size = hidden_size // total_num_heads
num_heads = total_num_heads // tp_world_size
head_start = tp_rank * num_heads
head_end = (tp_rank + 1) * num_heads
loaded_weight = loaded_weight.view(3, total_num_heads,
head_size, hidden_size)
loaded_weight = loaded_weight[:, head_start:head_end, :, :]
loaded_weight = loaded_weight.reshape(-1, hidden_size)
is_gate_up_weight = False
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
if weight_name not in name:
continue
param = state_dict[name.replace(weight_name, "gate_up_proj")]
shard_size = param.shape[0] // 2
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank:shard_size *
(tensor_model_parallel_rank + 1)]
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
(tp_rank + 1)]
param_slice = param.data[shard_size * stride_id:shard_size *
(stride_id + 1)]
assert param_slice.shape == loaded_weight.shape
@ -287,7 +310,11 @@ class BaiChuanForCausalLM(nn.Module):
continue
param = state_dict[name]
load_tensor_parallel_weights(param, loaded_weight, name,
self._column_parallel_weights,
self._row_parallel_weights,
tensor_model_parallel_rank)
load_tensor_parallel_weights(
param,
loaded_weight,
name,
self._column_parallel_weights,
self._row_parallel_weights,
tp_rank,
)