From d6ea427f04890014fa9b0ab8eb6d87e244ff1a48 Mon Sep 17 00:00:00 2001 From: wenyujin333 Date: Thu, 28 Mar 2024 23:19:59 +0800 Subject: [PATCH] [Model] Add support for Qwen2MoeModel (#3346) --- README.md | 1 + docs/source/models/supported_models.rst | 4 + vllm/model_executor/models/__init__.py | 1 + vllm/model_executor/models/qwen2_moe.py | 457 ++++++++++++++++++++++++ 4 files changed, 463 insertions(+) create mode 100644 vllm/model_executor/models/qwen2_moe.py diff --git a/README.md b/README.md index bf8fbd417394..08e46b68cb7c 100644 --- a/README.md +++ b/README.md @@ -89,6 +89,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi - Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.) - Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.) - Qwen2 (`Qwen/Qwen2-7B-beta`, `Qwen/Qwen-7B-Chat-beta`, etc.) +- Qwen2MoE (`Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc.) - StableLM(`stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc.) - Starcoder2(`bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc.) - Xverse (`xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc.) diff --git a/docs/source/models/supported_models.rst b/docs/source/models/supported_models.rst index 8ef6da4a6dac..9c2f5ba458eb 100644 --- a/docs/source/models/supported_models.rst +++ b/docs/source/models/supported_models.rst @@ -119,6 +119,10 @@ Alongside each architecture, we include some popular models that use it. - Qwen2 - :code:`Qwen/Qwen2-beta-7B`, :code:`Qwen/Qwen2-beta-7B-Chat`, etc. - ✅︎ + * - :code:`Qwen2MoeForCausalLM` + - Qwen2MoE + - :code:`Qwen/Qwen1.5-MoE-A2.7B`, :code:`Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc. + - * - :code:`StableLmForCausalLM` - StableLM - :code:`stabilityai/stablelm-3b-4e1t/` , :code:`stabilityai/stablelm-base-alpha-7b-v2`, etc. diff --git a/vllm/model_executor/models/__init__.py b/vllm/model_executor/models/__init__.py index 79ddb4736e25..b5c7e44de619 100755 --- a/vllm/model_executor/models/__init__.py +++ b/vllm/model_executor/models/__init__.py @@ -47,6 +47,7 @@ _MODELS = { "PhiForCausalLM": ("phi", "PhiForCausalLM"), "QWenLMHeadModel": ("qwen", "QWenLMHeadModel"), "Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"), + "Qwen2MoeForCausalLM": ("qwen2_moe", "Qwen2MoeForCausalLM"), "RWForCausalLM": ("falcon", "FalconForCausalLM"), "StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"), "StableLmForCausalLM": ("stablelm", "StablelmForCausalLM"), diff --git a/vllm/model_executor/models/qwen2_moe.py b/vllm/model_executor/models/qwen2_moe.py new file mode 100644 index 000000000000..6b4a74198fd5 --- /dev/null +++ b/vllm/model_executor/models/qwen2_moe.py @@ -0,0 +1,457 @@ +# coding=utf-8 +# Adapted from +# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py +# Copyright 2024 The Qwen team. +# Copyright 2023 The vLLM team. +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Inference-only Qwen2MoE model compatible with HuggingFace weights.""" +from typing import Any, Dict, List, Optional + +import torch +import torch.nn.functional as F +from torch import nn +from transformers import PretrainedConfig + +from vllm.attention import Attention, AttentionMetadata +from vllm.model_executor.layers.activation import SiluAndMul +from vllm.model_executor.layers.fused_moe import fused_moe +from vllm.model_executor.layers.layernorm import RMSNorm +from vllm.model_executor.layers.linear import (LinearMethodBase, + MergedColumnParallelLinear, + QKVParallelLinear, + ReplicatedLinear, + RowParallelLinear) +from vllm.model_executor.layers.logits_processor import LogitsProcessor +from vllm.model_executor.layers.rotary_embedding import get_rope +from vllm.model_executor.layers.sampler import Sampler +from vllm.model_executor.layers.vocab_parallel_embedding import ( + ParallelLMHead, VocabParallelEmbedding) +from vllm.model_executor.parallel_utils.communication_op import ( + tensor_model_parallel_all_reduce) +from vllm.model_executor.parallel_utils.parallel_state import ( + get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size) +from vllm.model_executor.sampling_metadata import SamplingMetadata +from vllm.model_executor.weight_utils import (default_weight_loader, + hf_model_weights_iterator) +from vllm.sequence import SamplerOutput + + +class Qwen2MoeMLP(nn.Module): + + def __init__( + self, + hidden_size: int, + intermediate_size: int, + hidden_act: str, + linear_method: Optional[LinearMethodBase] = None, + reduce_results: bool = True, + ) -> None: + super().__init__() + self.gate_up_proj = MergedColumnParallelLinear( + hidden_size, [intermediate_size] * 2, + bias=False, + linear_method=linear_method) + self.down_proj = RowParallelLinear(intermediate_size, + hidden_size, + bias=False, + linear_method=linear_method, + reduce_results=reduce_results) + if hidden_act != "silu": + raise ValueError(f"Unsupported activation: {hidden_act}. " + "Only silu is supported for now.") + self.act_fn = SiluAndMul() + + def forward(self, x): + gate_up, _ = self.gate_up_proj(x) + x = self.act_fn(gate_up) + x, _ = self.down_proj(x) + return x + + +class Qwen2MoeSparseMoeBlock(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None, + ): + super().__init__() + self.config = config + self.rank = get_tensor_model_parallel_rank() + self.tp_size = get_tensor_model_parallel_world_size() + self.n_routed_experts = config.num_experts + self.top_k = config.num_experts_per_tok + if self.tp_size > self.n_routed_experts: + raise ValueError( + f"Tensor parallel size {self.tp_size} is greater than " + f"the number of experts {self.n_routed_experts}.") + + self.experts = nn.ModuleList([ + Qwen2MoeMLP(hidden_size=config.hidden_size, + intermediate_size=config.moe_intermediate_size, + hidden_act=config.hidden_act, + linear_method=linear_method, + reduce_results=False) + for idx in range(self.n_routed_experts) + ]) + self.pack_params() + + self.gate = ReplicatedLinear(config.hidden_size, + self.n_routed_experts, + bias=False, + linear_method=None) + if config.shared_expert_intermediate_size > 0: + self.shared_expert = Qwen2MoeMLP( + hidden_size=config.hidden_size, + intermediate_size=config.shared_expert_intermediate_size, + hidden_act=config.hidden_act, + linear_method=linear_method, + reduce_results=False, + ) + else: + self.shared_expert = None + self.shared_expert_gate = torch.nn.Linear(config.hidden_size, + 1, + bias=False) + + def pack_params(self): + w1 = [] + w2 = [] + for expert in self.experts: + w1.append(expert.gate_up_proj.weight) + w2.append(expert.down_proj.weight) + self.w1 = torch._utils._flatten_dense_tensors(w1) + w1s = torch._utils._unflatten_dense_tensors(self.w1, w1) + for data, param in zip(w1s, w1): + param.data = data + self.w1 = self.w1.view(len(w1), *w1s[0].shape) + + self.w2 = torch._utils._flatten_dense_tensors(w2) + w2s = torch._utils._unflatten_dense_tensors(self.w2, w2) + for data, param in zip(w2s, w2): + param.data = data + + self.w2 = self.w2.view(len(w2), *w2s[0].shape) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + num_tokens, hidden_dim = hidden_states.shape + hidden_states = hidden_states.view(-1, hidden_dim) + shared_output = None + if self.shared_expert is not None: + shared_output = self.shared_expert(hidden_states) + if self.shared_expert_gate is not None: + shared_output = F.sigmoid( + self.shared_expert_gate(hidden_states)) * shared_output + + # router_logits: (num_tokens, n_experts) + router_logits, _ = self.gate(hidden_states) + final_hidden_states = fused_moe(hidden_states, + self.w1, + self.w2, + router_logits, + self.top_k, + renormalize=self.config.norm_topk_prob, + inplace=True) + + if shared_output is not None: + final_hidden_states = final_hidden_states + shared_output + final_hidden_states = tensor_model_parallel_all_reduce( + final_hidden_states) + + return final_hidden_states.view(num_tokens, hidden_dim) + + +class Qwen2MoeAttention(nn.Module): + + def __init__( + self, + hidden_size: int, + num_heads: int, + num_kv_heads: int, + rope_theta: float = 10000, + rope_scaling: Optional[Dict[str, Any]] = None, + max_position_embeddings: int = 8192, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.hidden_size = hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = num_heads + assert self.total_num_heads % tp_size == 0 + self.num_heads = self.total_num_heads // tp_size + self.total_num_kv_heads = num_kv_heads + if self.total_num_kv_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_kv_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_kv_heads == 0 + self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) + self.head_dim = hidden_size // self.total_num_heads + self.q_size = self.num_heads * self.head_dim + self.kv_size = self.num_kv_heads * self.head_dim + self.scaling = self.head_dim**-0.5 + self.rope_theta = rope_theta + self.max_position_embeddings = max_position_embeddings + + self.qkv_proj = QKVParallelLinear( + hidden_size, + self.head_dim, + self.total_num_heads, + self.total_num_kv_heads, + bias=True, + linear_method=linear_method, + ) + + self.o_proj = RowParallelLinear( + self.total_num_heads * self.head_dim, + hidden_size, + bias=False, + linear_method=linear_method, + ) + + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.head_dim, + max_position=max_position_embeddings, + base=rope_theta, + rope_scaling=rope_scaling, + ) + self.attn = Attention(self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_kv_heads) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + kv_cache: torch.Tensor, + attn_metadata: AttentionMetadata, + ) -> torch.Tensor: + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) + q, k = self.rotary_emb(positions, q, k) + attn_output = self.attn(q, k, v, kv_cache, attn_metadata) + output, _ = self.o_proj(attn_output) + return output + + +class Qwen2MoeDecoderLayer(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + layer_idx: int, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.hidden_size = config.hidden_size + rope_theta = getattr(config, "rope_theta", 10000) + rope_scaling = getattr(config, "rope_scaling", None) + max_position_embeddings = getattr(config, "max_position_embeddings", + 8192) + self.self_attn = Qwen2MoeAttention( + hidden_size=self.hidden_size, + num_heads=config.num_attention_heads, + num_kv_heads=config.num_key_value_heads, + rope_theta=rope_theta, + rope_scaling=rope_scaling, + max_position_embeddings=max_position_embeddings, + linear_method=linear_method, + ) + if (config.num_experts is not None + and (layer_idx + 1) % config.decoder_sparse_step == 0): + self.mlp = Qwen2MoeSparseMoeBlock(config=config, + linear_method=linear_method) + else: + self.mlp = Qwen2MoeMLP( + hidden_size=config.hidden_size, + intermediate_size=config.intermediate_size, + hidden_act=config.hidden_act, + linear_method=linear_method, + ) + self.input_layernorm = RMSNorm(config.hidden_size, + eps=config.rms_norm_eps) + self.post_attention_layernorm = RMSNorm(config.hidden_size, + eps=config.rms_norm_eps) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + kv_cache: torch.Tensor, + attn_metadata: AttentionMetadata, + residual: Optional[torch.Tensor], + ) -> torch.Tensor: + # Self Attention + if residual is None: + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + else: + hidden_states, residual = self.input_layernorm( + hidden_states, residual) + hidden_states = self.self_attn( + positions=positions, + hidden_states=hidden_states, + kv_cache=kv_cache, + attn_metadata=attn_metadata, + ) + + # Fully Connected + hidden_states, residual = self.post_attention_layernorm( + hidden_states, residual) + hidden_states = self.mlp(hidden_states) + return hidden_states, residual + + +class Qwen2MoeModel(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = VocabParallelEmbedding( + config.vocab_size, + config.hidden_size, + ) + self.layers = nn.ModuleList([ + Qwen2MoeDecoderLayer(config, + layer_idx, + linear_method=linear_method) + for layer_idx in range(config.num_hidden_layers) + ]) + self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + kv_caches: List[torch.Tensor], + attn_metadata: AttentionMetadata, + ) -> torch.Tensor: + hidden_states = self.embed_tokens(input_ids) + residual = None + for i in range(len(self.layers)): + layer = self.layers[i] + hidden_states, residual = layer(positions, hidden_states, + kv_caches[i], attn_metadata, + residual) + hidden_states, _ = self.norm(hidden_states, residual) + return hidden_states + + +class Qwen2MoeForCausalLM(nn.Module): + + def __init__( + self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.config = config + self.linear_method = linear_method + self.model = Qwen2MoeModel(config, linear_method) + self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) + self.logits_processor = LogitsProcessor(config.vocab_size) + self.sampler = Sampler() + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + kv_caches: List[torch.Tensor], + attn_metadata: AttentionMetadata, + ) -> torch.Tensor: + hidden_states = self.model(input_ids, positions, kv_caches, + attn_metadata) + return hidden_states + + def compute_logits(self, hidden_states: torch.Tensor, + sampling_metadata: SamplingMetadata) -> torch.Tensor: + logits = self.logits_processor(self.lm_head.weight, hidden_states, + sampling_metadata) + return logits + + def sample( + self, + logits: Optional[torch.Tensor], + sampling_metadata: SamplingMetadata, + ) -> Optional[SamplerOutput]: + next_tokens = self.sampler(logits, sampling_metadata) + return next_tokens + + def load_weights(self, + model_name_or_path: str, + cache_dir: Optional[str] = None, + load_format: str = "auto", + revision: Optional[str] = None): + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + ("qkv_proj", "q_proj", "q"), + ("qkv_proj", "k_proj", "k"), + ("qkv_proj", "v_proj", "v"), + ("gate_up_proj", "gate_proj", 0), + ("gate_up_proj", "up_proj", 1), + ] + + params_dict = dict(self.named_parameters()) + for name, loaded_weight in hf_model_weights_iterator( + model_name_or_path, + cache_dir, + load_format, + revision, + fall_back_to_pt=False): + if "rotary_emb.inv_freq" in name: + continue + for (param_name, weight_name, shard_id) in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + # Skip experts that are not assigned to this worker. + if (("mlp.experts." in name or "mlp.shared_expert." in name) + and name not in params_dict): + continue + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + # Skip experts that are not assigned to this worker. + if (("mlp.experts." in name or "mlp.shared_expert." in name) + and name not in params_dict): + continue + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", + default_weight_loader) + weight_loader(param, loaded_weight)