[Core] Async Scheduling X Spec Decoding Compatibility (#24799)

Signed-off-by: Ronald1995 <ronaldautomobile@163.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Benjamin Chislett <chislett.ben@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Benjamin Chislett <chislett.ben@gmail.com>
This commit is contained in:
Ronald 2025-11-18 04:16:20 +08:00 committed by GitHub
parent f8b19c0ffd
commit d8874c61a5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 314 additions and 98 deletions

View File

@ -15,7 +15,7 @@ from ...conftest import VllmRunner
from ...models.utils import check_outputs_equal
MODEL = "Qwen/Qwen3-0.6B"
MTP_MODEL = "XiaomiMiMo/MiMo-7B-Base"
MTP_MODEL = "meta-llama/Llama-3.2-1B-Instruct"
first_prompt = (
@ -29,7 +29,8 @@ example_prompts = [first_prompt, "In one word, the capital of France is "] + [
default_params = dict(
temperature=0.0, # greedy
max_tokens=20,
max_tokens=23,
min_tokens=18,
)
@ -69,15 +70,9 @@ def test_without_spec_decoding(
(True, "uni", True, None, True),
]
run_tests(
monkeypatch,
MODEL,
test_configs,
test_sampling_params,
)
run_tests(monkeypatch, MODEL, test_configs, test_sampling_params)
@pytest.mark.skip("MTP model too big to run in fp32 in CI")
def test_with_spec_decoding(monkeypatch: pytest.MonkeyPatch):
"""Test consistency and acceptance rates with some different combos of
preemption, executor, async scheduling, prefill chunking,
@ -85,8 +80,9 @@ def test_with_spec_decoding(monkeypatch: pytest.MonkeyPatch):
"""
spec_config = {
"method": "mtp",
"method": "eagle3",
"num_speculative_tokens": 2,
"model": "nm-testing/Llama3_2_1B_speculator.eagle3",
}
spec_config_short = spec_config | {"max_model_len": 50}
@ -106,12 +102,7 @@ def test_with_spec_decoding(monkeypatch: pytest.MonkeyPatch):
(True, "uni", True, spec_config_short, True),
]
run_tests(
monkeypatch,
MTP_MODEL,
test_configs,
[{}],
)
run_tests(monkeypatch, MTP_MODEL, test_configs, [{}])
@dynamo_config.patch(cache_size_limit=16)
@ -182,15 +173,13 @@ def run_tests(
and test_acceptance_rate is not None
):
if "spec_mml=None" in test_config:
# because the acceptance rate can vary, we use a looser
# tolerance here.
assert (
pytest.approx(test_acceptance_rate, rel=5e-2)
== base_acceptance_rate
)
else:
# Currently the reported acceptance rate is expected to be
# lower when we skip drafting altogether.
# lower when we sometimes skip drafting altogether.
assert test_acceptance_rate > 0.05
print(
f"PASSED: config=[{test_config}], params={params}"
@ -220,6 +209,7 @@ def run_test(
):
spec_decoding = spec_config is not None
cache_arg: dict[str, Any] = (
# Force preemptions
dict(num_gpu_blocks_override=32)
if test_preemption
else dict(gpu_memory_utilization=0.9)
@ -238,6 +228,7 @@ def run_test(
model,
max_model_len=512,
enable_chunked_prefill=test_prefill_chunking,
# Force prefill chunking
max_num_batched_tokens=48 if test_prefill_chunking else None,
# enforce_eager=True,
async_scheduling=async_scheduling,
@ -255,10 +246,7 @@ def run_test(
results.append(
vllm_model.generate(
example_prompts,
sampling_params=SamplingParams(
**default_params,
**override_params,
),
sampling_params=SamplingParams(**default_params, **override_params),
return_logprobs=True,
)
)
@ -270,9 +258,7 @@ def run_test(
if test_preemption:
preemptions = _get_count(
metrics_before,
metrics_after,
"vllm:num_preemptions",
metrics_before, metrics_after, "vllm:num_preemptions"
)
assert preemptions > 0, "preemption test had no preemptions"

View File

@ -3,7 +3,7 @@
import ast
import hashlib
from typing import TYPE_CHECKING, Any, Literal
from typing import TYPE_CHECKING, Any, Literal, get_args
from pydantic import Field, SkipValidation, model_validator
from pydantic.dataclasses import dataclass
@ -29,31 +29,25 @@ else:
logger = init_logger(__name__)
SpeculativeMethod = Literal[
"ngram",
"eagle",
"eagle3",
"medusa",
"mlp_speculator",
"draft_model",
"deepseek_mtp",
"ernie_mtp",
"qwen3_next_mtp",
"mimo_mtp",
"longcat_flash_mtp",
"pangu_ultra_moe_mtp",
"mtp",
"suffix",
]
MTP_MODEL_TYPES = (
MTPModelTypes = Literal[
"deepseek_mtp",
"mimo_mtp",
"glm4_moe_mtp",
"ernie_mtp",
"qwen3_next_mtp",
"longcat_flash_mtp",
"mtp",
"pangu_ultra_moe_mtp",
)
]
EagleModelTypes = Literal["eagle", "eagle3", MTPModelTypes]
SpeculativeMethod = Literal[
"ngram",
"medusa",
"mlp_speculator",
"draft_model",
"suffix",
EagleModelTypes,
]
@config
@ -244,7 +238,7 @@ class SpeculativeConfig:
# can not be detected, it will be considered as the "draft_model" by
# default.
if self.method in MTP_MODEL_TYPES:
if self.method in get_args(MTPModelTypes) and self.method != "mtp":
logger.warning(
"method `%s` is deprecated and replaced with mtp.", self.method
)
@ -361,7 +355,9 @@ class SpeculativeConfig:
self.method = "medusa"
elif self.draft_model_config.hf_config.model_type == "mlp_speculator":
self.method = "mlp_speculator"
elif self.draft_model_config.hf_config.model_type in MTP_MODEL_TYPES:
elif self.draft_model_config.hf_config.model_type in get_args(
MTPModelTypes
):
self.method = "mtp"
if self.num_speculative_tokens > 1:
logger.warning(

View File

@ -14,13 +14,14 @@ from dataclasses import replace
from datetime import datetime
from functools import lru_cache
from pathlib import Path
from typing import TYPE_CHECKING, Any, TypeVar
from typing import TYPE_CHECKING, Any, TypeVar, get_args
import torch
from pydantic import ConfigDict, Field, model_validator
from pydantic.dataclasses import dataclass
import vllm.envs as envs
from vllm.config.speculative import EagleModelTypes
from vllm.logger import enable_trace_function_call, init_logger
from vllm.transformers_utils.runai_utils import is_runai_obj_uri
from vllm.utils import random_uuid
@ -374,10 +375,22 @@ class VllmConfig:
"Async scheduling is not yet compatible with "
"pipeline_parallel_size > 1."
)
# Currently, async scheduling only support eagle speculative
# decoding.
if self.speculative_config is not None:
raise ValueError(
"Async scheduling is not yet compatible with speculative decoding."
)
if self.speculative_config.method not in get_args(EagleModelTypes):
raise ValueError(
"Currently, async scheduling is only supported "
"with EAGLE/MTP kind of speculative decoding"
)
if self.speculative_config.disable_padded_drafter_batch:
raise ValueError(
"async scheduling for EAGLE/MTP kind of speculative "
"decoding is enabled, but disable_padded_drafter_batch=True "
"disable_padded_drafter_batch=True is not supported for "
"this situation now. please set "
"disable_padded_drafter_batch=Fasle"
)
if not executor_supports_async_sched:
raise ValueError(
"Currently, async scheduling only supports `mp`, `uni`, or "

View File

@ -16,18 +16,25 @@ class AsyncScheduler(Scheduler):
) -> None:
super()._update_after_schedule(scheduler_output)
pending_structured_output_tokens = False
spec_decode_tokens = scheduler_output.scheduled_spec_decode_tokens
for req_id in scheduler_output.num_scheduled_tokens:
request = self.requests[req_id]
pending_structured_output_tokens |= (
request.use_structured_output and request.num_output_placeholders > 0
)
cur_num_spec_tokens = len(spec_decode_tokens.get(req_id, ()))
if (
request.num_computed_tokens
== request.num_tokens + request.num_output_placeholders
== request.num_tokens
+ request.num_output_placeholders
+ cur_num_spec_tokens
):
# The request will generate a new token in this scheduling step.
# TODO(woosuk): Support speculative decoding.
request.num_output_placeholders += 1
# The request will generate a new token plus num_spec_tokens
# in this scheduling step.
request.num_output_placeholders += 1 + cur_num_spec_tokens
# Add placeholders for the new tokens in spec_token_ids.
# Wwe will update the actual spec token ids in the worker process.
request.spec_token_ids = [-1] * self.num_spec_tokens
scheduler_output.pending_structured_output_tokens = (
pending_structured_output_tokens

View File

@ -348,7 +348,10 @@ class Scheduler(SchedulerInterface):
# Speculative decode related.
if request.spec_token_ids:
num_scheduled_spec_tokens = (
num_new_tokens + request.num_computed_tokens - request.num_tokens
num_new_tokens
+ request.num_computed_tokens
- request.num_tokens
- request.num_output_placeholders
)
if num_scheduled_spec_tokens > 0:
# Trim spec_token_ids list to num_scheduled_spec_tokens.
@ -1024,7 +1027,12 @@ class Scheduler(SchedulerInterface):
# tokens and rejections. If some tokens are rejected,
# num_computed_tokens is decreased by the number of rejected
# tokens.
request.num_computed_tokens -= num_rejected
if request.num_computed_tokens > 0:
request.num_computed_tokens -= num_rejected
# If async scheduling, num_output_placeholders also includes
# the scheduled spec tokens count and so is similarly adjusted.
if request.num_output_placeholders > 0:
request.num_output_placeholders -= num_rejected
spec_decoding_stats = self.make_spec_decoding_stats(
spec_decoding_stats,
num_draft_tokens=num_draft_tokens,

View File

@ -198,6 +198,7 @@ class EngineCore:
self.step_fn = (
self.step if self.batch_queue is None else self.step_with_batch_queue
)
self.async_scheduling = vllm_config.scheduler_config.async_scheduling
# Mark the startup heap as static so that it's ignored by GC.
# Reduces pause times of oldest generation collections.
@ -341,7 +342,10 @@ class EngineCore:
return engine_core_outputs, scheduler_output.total_num_scheduled_tokens > 0
def post_step(self, model_executed: bool) -> None:
if self.use_spec_decode and model_executed:
# When using async scheduling we can't get draft token ids in advance,
# so we update draft token ids in the worker process and don't
# need to update draft token ids here.
if not self.async_scheduling and self.use_spec_decode and model_executed:
# Take the draft token ids.
draft_token_ids = self.model_executor.take_draft_token_ids()
if draft_token_ids is not None:

View File

@ -150,6 +150,23 @@ class Processor:
raise ValueError(
"vLLM V1 does not support per request user provided logits processors."
)
# Async scheduling + spec decode currently incompatible with some
# sampling parameters.
if (
self.vllm_config.speculative_config is not None
and self.vllm_config.scheduler_config.async_scheduling
and (
params.frequency_penalty != 0.0
or params.presence_penalty != 0.0
or params.repetition_penalty != 1.0
or params.bad_words_token_ids
or params.structured_outputs
)
):
raise ValueError(
"async scheduling with spec decoding doesn't yet support "
"penalties, bad words or structured outputs in sampling parameters."
)
def _validate_params(
self,

View File

@ -41,7 +41,7 @@ STR_POOLING_REJECTS_LOGITSPROCS = (
# Error message when the user tries to initialize vLLM with a speculative
# decoding enabled and custom logitsproces
STR_SPEC_DEC_REJECTS_LOGITSPROCS = (
"Custom logits processors are not supportedwhen speculative decoding is enabled."
"Custom logits processors are not supported when speculative decoding is enabled."
)
LOGITSPROCS_GROUP = "vllm.logits_processors"

View File

@ -397,10 +397,13 @@ class EagleProposer:
positions += 1
exceeds_max_model_len = positions >= self.max_model_len
clamped_positions = torch.where(exceeds_max_model_len, 0, positions)
# For data integrity when async scheduling, we shouldn't use in place
# operations in case they are modified in next step's `prepare_input`
# of main model.
# Increment the sequence lengths.
common_attn_metadata.seq_lens += 1
common_attn_metadata.seq_lens_cpu += 1
# This is an out-of-place operation to avoid modifying the original tensor.
common_attn_metadata.seq_lens_cpu = common_attn_metadata.seq_lens_cpu + 1
# For the requests that exceed the max model length, we set the
# sequence length to 1 to minimize their overheads in attention.

View File

@ -46,6 +46,9 @@ class CachedRequestState:
lora_request: LoRARequest | None = None
prompt_embeds: torch.Tensor | None = None
# Used when both async_scheduling and spec_decode are enabled.
prev_num_draft_len: int = 0
def __post_init__(self):
self.num_prompt_tokens = length_from_prompt_token_ids_or_embeds(
self.prompt_token_ids, self.prompt_embeds

View File

@ -179,6 +179,7 @@ class AsyncGPUModelRunnerOutput(AsyncModelRunnerOutput):
logprobs_tensors: torch.Tensor | None,
invalid_req_indices: list[int],
async_output_copy_stream: torch.cuda.Stream,
vocab_size: int,
):
self._model_runner_output = model_runner_output
self._invalid_req_indices = invalid_req_indices
@ -189,6 +190,7 @@ class AsyncGPUModelRunnerOutput(AsyncModelRunnerOutput):
# Keep a reference to the device tensor to avoid it being
# deallocated until we finish copying it to the host.
self._sampled_token_ids = sampled_token_ids
self.vocab_size = vocab_size
self._logprobs_tensors = logprobs_tensors
# Initiate the copy on a separate stream, but do not synchronize it.
@ -215,10 +217,16 @@ class AsyncGPUModelRunnerOutput(AsyncModelRunnerOutput):
# Release the device tensors once the copy has completed.
del self._logprobs_tensors
del self._sampled_token_ids
valid_sampled_token_ids: list[np.ndarray] = [
row for row in self.sampled_token_ids_cpu.numpy()
]
max_gen_len = self.sampled_token_ids_cpu.shape[-1]
if max_gen_len == 1:
valid_sampled_token_ids: list[np.ndarray] = [
row for row in self.sampled_token_ids_cpu.numpy()
]
else:
valid_sampled_token_ids = RejectionSampler.parse_output(
self.sampled_token_ids_cpu,
self.vocab_size,
)
for i in self._invalid_req_indices:
valid_sampled_token_ids[i] = np.array([])
@ -377,6 +385,10 @@ class GPUModelRunner(
)
self.rejection_sampler = RejectionSampler(self.sampler)
self.num_spec_tokens = 0
if self.speculative_config:
self.num_spec_tokens = self.speculative_config.num_speculative_tokens
# Request states.
self.requests: dict[str, CachedRequestState] = {}
self.comm_stream = torch.cuda.Stream()
@ -513,11 +525,7 @@ class GPUModelRunner(
self.max_num_tokens, dtype=torch.int32, device=self.device
)
self.uniform_decode_query_len = (
1
if not self.speculative_config
else 1 + self.speculative_config.num_speculative_tokens
)
self.uniform_decode_query_len = 1 + self.num_spec_tokens
# Cudagraph dispatcher for runtime cudagraph dispatching.
self.cudagraph_dispatcher = CudagraphDispatcher(self.vllm_config)
@ -549,6 +557,20 @@ class GPUModelRunner(
pin_memory=self.pin_memory,
)
# Pre-allocated tensor for copying valid sampled token counts to CPU,
# with dedicated stream for overlapping and event for coordination.
self.valid_sampled_token_count_event: torch.cuda.Event | None = None
self.valid_sampled_token_count_copy_stream: torch.cuda.Stream | None = None
if self.use_async_scheduling and self.num_spec_tokens:
self.valid_sampled_token_count_event = torch.cuda.Event()
self.valid_sampled_token_count_copy_stream = torch.cuda.Stream()
self.valid_sampled_token_count_cpu = torch.empty(
self.max_num_reqs,
dtype=torch.int64,
device="cpu",
pin_memory=self.pin_memory,
)
# Ephemeral state transferred between execute_model() and sample_tokens().
self.execute_model_state: ExecuteModelState | None = None
@ -736,17 +758,45 @@ class GPUModelRunner(
# Update the states of the running/resumed requests.
is_last_rank = get_pp_group().is_last_rank
req_data = scheduler_output.scheduled_cached_reqs
# Wait until valid_sampled_tokens_count is copied to cpu,
# then use it to update actual num_computed_tokens of each request.
valid_sampled_token_count = self._get_valid_sampled_token_count()
for i, req_id in enumerate(req_data.req_ids):
req_state = self.requests[req_id]
num_computed_tokens = req_data.num_computed_tokens[i]
new_block_ids = req_data.new_block_ids[i]
resumed_from_preemption = req_id in req_data.resumed_req_ids
num_output_tokens = req_data.num_output_tokens[i]
req_index = self.input_batch.req_id_to_index.get(req_id)
# prev_num_draft_len is used in async scheduling mode with
# spec decode. it indicates if need to update num_computed_tokens
# of the request. for example:
# fist step: num_computed_tokens = 0, spec_tokens = [],
# prev_num_draft_len = 0.
# second step: num_computed_tokens = 100(prompt lenth),
# spec_tokens = [a,b], prev_num_draft_len = 0.
# third step: num_computed_tokens = 100 + 2, spec_tokens = [c,d],
# prev_num_draft_len = 2.
# num_computed_tokens in first step and second step does't contain
# the spec tokens length, but in third step it contains the
# spec tokens length. we only need to update num_computed_tokens
# when prev_num_draft_len > 0.
if req_state.prev_num_draft_len:
if req_index is None:
req_state.prev_num_draft_len = 0
else:
assert self.input_batch.prev_req_id_to_index is not None
prev_req_index = self.input_batch.prev_req_id_to_index[req_id]
num_accepted = valid_sampled_token_count[prev_req_index] - 1
num_rejected = req_state.prev_num_draft_len - num_accepted
num_computed_tokens -= num_rejected
req_state.output_token_ids.extend([-1] * num_accepted)
# Update the cached states.
req_state.num_computed_tokens = num_computed_tokens
req_index = self.input_batch.req_id_to_index.get(req_id)
if not is_last_rank:
# When using PP, the scheduler sends the sampled tokens back,
@ -823,8 +873,11 @@ class GPUModelRunner(
spec_token_ids = scheduler_output.scheduled_spec_decode_tokens.get(
req_id, []
)
if spec_token_ids:
num_spec_tokens = len(spec_token_ids)
num_spec_tokens = len(spec_token_ids)
# For async scheduling, token_ids_cpu assigned from
# spec_token_ids are placeholders and will be overwritten in
# _prepare_input_ids.
if num_spec_tokens:
start_index = self.input_batch.num_tokens_no_spec[req_index]
end_token_index = start_index + num_spec_tokens
self.input_batch.token_ids_cpu[
@ -840,6 +893,15 @@ class GPUModelRunner(
# even when speculative decoding is enabled.
self.input_batch.spec_token_ids[req_index] = spec_token_ids
# there are no draft tokens with async scheduling,
# we clear the spec_decoding info in scheduler_output and
# use normal sampling but rejection_sampling.
if self.use_async_scheduling:
req_state.prev_num_draft_len = num_spec_tokens
if num_spec_tokens and self._draft_token_ids is None:
scheduler_output.total_num_scheduled_tokens -= num_spec_tokens
scheduler_output.num_scheduled_tokens[req_id] -= num_spec_tokens
scheduler_output.scheduled_spec_decode_tokens.pop(req_id, None)
# Add the new or resumed requests to the persistent batch.
# The smaller empty indices are filled first.
for request in reqs_to_add:
@ -959,7 +1021,10 @@ class GPUModelRunner(
return cu_num_tokens, arange
def _prepare_input_ids(
self, total_num_scheduled_tokens: int, cu_num_tokens: np.ndarray
self,
scheduler_output: "SchedulerOutput",
total_num_scheduled_tokens: int,
cu_num_tokens: np.ndarray,
) -> None:
"""Prepare the input IDs for the current batch.
@ -980,21 +1045,43 @@ class GPUModelRunner(
# on the GPU from prev_sampled_token_ids.
prev_req_id_to_index = self.input_batch.prev_req_id_to_index
assert prev_req_id_to_index is not None
flattened_indices = []
prev_common_req_indices = []
sample_flattened_indices: list[int] = []
spec_flattened_indices: list[int] = []
prev_common_req_indices: list[int] = []
prev_draft_token_indices: list[int] = []
indices_match = True
max_flattened_index = -1
total_num_spec_tokens = 0
scheduled_spec_tokens = scheduler_output.scheduled_spec_decode_tokens
for req_id, cur_index in self.input_batch.req_id_to_index.items():
if (prev_index := prev_req_id_to_index.get(req_id)) is not None:
prev_common_req_indices.append(prev_index)
# We need to compute the flattened input_ids index of the
# last token in each common request.
draft_len = len(scheduled_spec_tokens.get(req_id, ()))
total_num_spec_tokens += draft_len
flattened_index = cu_num_tokens[cur_index].item() - 1
flattened_indices.append(flattened_index)
# example: cu_num_tokens = [2, 5, 8], draft_tokens = [1, 2, 2]
# sample_flattened_indices = [0, 2, 5]
# spec_flattened_indices = [1, 3, 4, 6, 7]
sample_flattened_indices.append(flattened_index - draft_len)
spec_flattened_indices.extend(
range(flattened_index - draft_len + 1, flattened_index + 1)
)
start = prev_index * self.num_spec_tokens
# prev_draft_token_indices is used to find which draft_tokens_id
# should be copied to input_ids
# example: prev draft_tokens_id [[1,2], [3,4], [5, 6]]
# flatten draft_tokens_id [1,2,3,4,5,6]
# draft_len of each request [1, 2, 1]
# then prev_draft_token_indices is [0, 2, 3, 4]
prev_draft_token_indices.extend(range(start, start + draft_len))
indices_match &= prev_index == flattened_index
max_flattened_index = max(max_flattened_index, flattened_index)
num_commmon_tokens = len(flattened_indices)
if num_commmon_tokens < total_num_scheduled_tokens:
num_commmon_tokens = len(sample_flattened_indices)
total_without_spec = total_num_scheduled_tokens - total_num_spec_tokens
if num_commmon_tokens < total_without_spec:
# If not all requests are decodes from the last iteration,
# We need to copy the input_ids_cpu to the GPU first.
self.input_ids.copy_to_gpu(total_num_scheduled_tokens)
@ -1018,20 +1105,43 @@ class GPUModelRunner(
self.is_token_ids.gpu[:num_commmon_tokens] = True
return
# Upload the index tensors asynchronously so the scatter can be non-blocking.
input_ids_index_tensor = torch.tensor(
flattened_indices, dtype=torch.int64, pin_memory=self.pin_memory
sampled_tokens_index_tensor = torch.tensor(
sample_flattened_indices, dtype=torch.int64, pin_memory=self.pin_memory
).to(self.device, non_blocking=True)
prev_common_req_indices_tensor = torch.tensor(
prev_common_req_indices, dtype=torch.int64, pin_memory=self.pin_memory
).to(self.device, non_blocking=True)
self.input_ids.gpu.scatter_(
dim=0,
index=input_ids_index_tensor,
index=sampled_tokens_index_tensor,
src=self.input_batch.prev_sampled_token_ids[
prev_common_req_indices_tensor, 0
],
)
# Scatter the draft tokens after the sampled tokens are scattered.
if self._draft_token_ids is None or not spec_flattened_indices:
return
assert isinstance(self._draft_token_ids, torch.Tensor)
draft_tokens_index_tensor = torch.tensor(
spec_flattened_indices, dtype=torch.int64, pin_memory=self.pin_memory
).to(self.device, non_blocking=True)
prev_draft_token_indices_tensor = torch.tensor(
prev_draft_token_indices, dtype=torch.int64, pin_memory=self.pin_memory
).to(self.device, non_blocking=True)
# because input_ids dtype is torch.int32,
# so convert draft_token_ids to torch.int32 here.
draft_token_ids = self._draft_token_ids.to(dtype=torch.int32)
self._draft_token_ids = None
self.input_ids.gpu.scatter_(
dim=0,
index=draft_tokens_index_tensor,
src=draft_token_ids.flatten()[prev_draft_token_indices_tensor],
)
def _get_encoder_seq_lens(
self,
scheduled_encoder_inputs: dict[str, list[int]],
@ -1218,7 +1328,11 @@ class GPUModelRunner(
self.discard_request_indices.copy_to_gpu(self.num_discarded_requests)
# Copy the tensors to the GPU.
self._prepare_input_ids(total_num_scheduled_tokens, cu_num_tokens)
self._prepare_input_ids(
scheduler_output,
total_num_scheduled_tokens,
cu_num_tokens,
)
if self.uses_mrope:
# Only relevant for models using M-RoPE (e.g, Qwen2-VL)
@ -2377,12 +2491,14 @@ class GPUModelRunner(
valid_sampled_token_ids = []
invalid_req_indices = discard_sampled_tokens_req_indices.tolist()
invalid_req_indices_set = set(invalid_req_indices)
assert sampled_token_ids.shape[-1] == 1
# Cache the sampled tokens on the GPU and avoid CPU sync.
# These will be copied into input_ids in the next step
# when preparing inputs.
self.input_batch.prev_sampled_token_ids = sampled_token_ids
# With spec decoding, this is done in propose_draft_token_ids().
if self.input_batch.prev_sampled_token_ids is None:
assert sampled_token_ids.shape[-1] == 1
self.input_batch.prev_sampled_token_ids = sampled_token_ids
self.input_batch.prev_req_id_to_index = {
req_id: i
for i, req_id in enumerate(self.input_batch.req_ids)
@ -2517,6 +2633,21 @@ class GPUModelRunner(
"State error: sample_tokens() must be called "
"after execute_model() returns None."
)
# self._draft_token_ids is None when `input_fits_in_drafter=False`
# and there is no draft tokens scheduled. so it need to update the
# spec_decoding info in scheduler_output with async_scheduling.
# use deepcopy to avoid the modification has influence on the
# scheduler_output in engine core process.
# TODO(Ronald1995): deepcopy is expensive when there is a large
# number of requests, optimize it later.
if (
self.use_async_scheduling
and self.num_spec_tokens
and self._draft_token_ids is None
):
scheduler_output = deepcopy(scheduler_output)
num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
with record_function_or_nullcontext("gpu_model_runner: preprocess"):
with self.synchronize_input_prep():
@ -2759,6 +2890,8 @@ class GPUModelRunner(
with record_function_or_nullcontext("gpu_model_runner: sample"):
sampler_output = self._sample(logits, spec_decode_metadata)
self.input_batch.prev_sampled_token_ids = None
def propose_draft_token_ids(
sampled_token_ids: torch.Tensor | list[np.ndarray],
) -> None:
@ -2792,14 +2925,29 @@ class GPUModelRunner(
self.speculative_config.draft_model_config.max_model_len
)
input_fits_in_drafter = spec_decode_common_attn_metadata and (
spec_decode_common_attn_metadata.max_seq_len
+ self.speculative_config.num_speculative_tokens
spec_decode_common_attn_metadata.max_seq_len + self.num_spec_tokens
<= effective_drafter_max_model_len
)
if use_padded_batch_for_eagle and input_fits_in_drafter:
# EAGLE speculative decoding can use the GPU sampled tokens
# as inputs, and does not need to wait for bookkeeping to finish.
propose_draft_token_ids(sampler_output.sampled_token_ids)
if use_padded_batch_for_eagle:
sampled_token_ids = sampler_output.sampled_token_ids
if input_fits_in_drafter:
# EAGLE speculative decoding can use the GPU sampled tokens
# as inputs, and does not need to wait for bookkeeping to finish.
propose_draft_token_ids(sampled_token_ids)
elif self.valid_sampled_token_count_event is not None:
next_token_ids, valid_sampled_tokens_count = (
self.drafter.prepare_next_token_ids_padded(
spec_decode_common_attn_metadata,
sampled_token_ids,
self.requests,
self.input_batch,
self.discard_request_indices.gpu,
self.num_discarded_requests,
)
)
self._copy_valid_sampled_token_count(
next_token_ids, valid_sampled_tokens_count
)
with record_function_or_nullcontext("gpu_model_runner: bookkeep"):
(
@ -2856,6 +3004,7 @@ class GPUModelRunner(
logprobs_tensors=sampler_output.logprobs_tensors,
invalid_req_indices=invalid_req_indices,
async_output_copy_stream=self.async_output_copy_stream,
vocab_size=self.input_batch.vocab_size,
)
with record_function_or_nullcontext(
"gpu_model_runner: set_async_sampled_token_ids"
@ -2880,6 +3029,37 @@ class GPUModelRunner(
self._draft_token_ids = None
return DraftTokenIds(req_ids, draft_token_ids)
def _copy_valid_sampled_token_count(
self, next_token_ids: torch.Tensor, valid_sampled_tokens_count: torch.Tensor
) -> None:
if self.valid_sampled_token_count_event is None:
return
default_stream = torch.cuda.current_stream()
# Initialize a new stream to overlap the copy operation with
# prepare_input of draft model.
with torch.cuda.stream(self.valid_sampled_token_count_copy_stream):
self.valid_sampled_token_count_copy_stream.wait_stream(default_stream) # type: ignore
counts = valid_sampled_tokens_count
counts_cpu = self.valid_sampled_token_count_cpu
counts_cpu[: counts.shape[0]].copy_(counts, non_blocking=True)
self.valid_sampled_token_count_event.record()
self.input_batch.prev_sampled_token_ids = next_token_ids.unsqueeze(1)
def _get_valid_sampled_token_count(self) -> list[int]:
# Wait until valid_sampled_tokens_count is copied to cpu,
prev_sampled_token_ids = self.input_batch.prev_sampled_token_ids
if (
self.valid_sampled_token_count_event is None
or prev_sampled_token_ids is None
):
return []
counts_cpu = self.valid_sampled_token_count_cpu
self.valid_sampled_token_count_event.synchronize()
return counts_cpu[: prev_sampled_token_ids.shape[0]].tolist()
def propose_draft_token_ids(
self,
scheduler_output: "SchedulerOutput",
@ -2967,6 +3147,9 @@ class GPUModelRunner(
self.num_discarded_requests,
)
)
self._copy_valid_sampled_token_count(
next_token_ids, valid_sampled_tokens_count
)
if spec_decode_metadata is None:
token_indices_to_sample = None
@ -3532,7 +3715,7 @@ class GPUModelRunner(
# TODO(luka) better system for describing dummy batches
seq_lens = [1] * num_decode_tokens + [num_prefill_tokens + 1]
else:
seq_lens = max_query_len
seq_lens = max_query_len # type: ignore[assignment]
self.seq_lens.np[:num_reqs] = seq_lens
self.seq_lens.np[num_reqs:] = 0
self.seq_lens.copy_to_gpu()
@ -4485,11 +4668,7 @@ class GPUModelRunner(
logitsprocs=self.input_batch.logitsprocs,
logitsprocs_need_output_token_ids=self.input_batch.logitsprocs_need_output_token_ids,
is_pooling_model=self.is_pooling_model,
num_speculative_tokens=(
self.vllm_config.speculative_config.num_speculative_tokens
if self.vllm_config.speculative_config
else 0
),
num_speculative_tokens=self.num_spec_tokens,
)
def _allocate_kv_cache_tensors(