mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-29 22:11:56 +08:00
[Feature][EPLB] Add eplb support for Qwen3 (#20815)
Signed-off-by: aladerran <aladerran@gmail.com>
This commit is contained in:
parent
b876860c62
commit
d979dd6beb
@ -22,7 +22,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Qwen3MoE model compatible with HuggingFace weights."""
|
||||
from collections.abc import Iterable
|
||||
import typing
|
||||
from collections.abc import Callable, Iterable
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import torch
|
||||
@ -31,8 +32,9 @@ from transformers import PretrainedConfig
|
||||
|
||||
from vllm.attention import Attention
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||
from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config
|
||||
from vllm.distributed import (get_ep_group, get_pp_group,
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.logger import init_logger
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
@ -50,8 +52,8 @@ from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .interfaces import SupportsLoRA, SupportsPP
|
||||
from .utils import (AutoWeightsLoader, extract_layer_index,
|
||||
from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP
|
||||
from .utils import (AutoWeightsLoader, PPMissingLayer, extract_layer_index,
|
||||
is_pp_missing_parameter,
|
||||
make_empty_intermediate_tensors_factory, make_layers,
|
||||
maybe_prefix)
|
||||
@ -101,23 +103,47 @@ class Qwen3MoeSparseMoeBlock(nn.Module):
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
enable_eplb: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
|
||||
self.ep_group = get_ep_group().device_group
|
||||
self.ep_rank = self.ep_group.rank()
|
||||
self.ep_size = self.ep_group.size()
|
||||
self.n_routed_experts = config.num_experts
|
||||
|
||||
if self.tp_size > config.num_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {config.num_experts}.")
|
||||
|
||||
self.experts = FusedMoE(num_experts=config.num_experts,
|
||||
# Load balancing settings.
|
||||
vllm_config = get_current_vllm_config()
|
||||
parallel_config = vllm_config.parallel_config
|
||||
self.enable_eplb = enable_eplb
|
||||
|
||||
self.n_logical_experts = self.n_routed_experts
|
||||
self.n_redundant_experts = parallel_config.num_redundant_experts
|
||||
self.n_physical_experts = (self.n_logical_experts +
|
||||
self.n_redundant_experts)
|
||||
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
||||
|
||||
self.physical_expert_start = (self.ep_rank *
|
||||
self.n_local_physical_experts)
|
||||
self.physical_expert_end = (self.physical_expert_start +
|
||||
self.n_local_physical_experts)
|
||||
|
||||
self.experts = FusedMoE(num_experts=self.n_routed_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.moe_intermediate_size,
|
||||
reduce_results=False,
|
||||
renormalize=config.norm_topk_prob,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.experts")
|
||||
prefix=f"{prefix}.experts",
|
||||
enable_eplb=self.enable_eplb,
|
||||
num_redundant_experts=self.n_redundant_experts)
|
||||
|
||||
self.gate = ReplicatedLinear(config.hidden_size,
|
||||
config.num_experts,
|
||||
@ -246,6 +272,7 @@ class Qwen3MoeDecoderLayer(nn.Module):
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
enable_eplb: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
@ -277,7 +304,8 @@ class Qwen3MoeDecoderLayer(nn.Module):
|
||||
(layer_idx + 1) % config.decoder_sparse_step == 0):
|
||||
self.mlp = Qwen3MoeSparseMoeBlock(config=config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
prefix=f"{prefix}.mlp",
|
||||
enable_eplb=enable_eplb)
|
||||
else:
|
||||
self.mlp = Qwen3MoeMLP(hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
@ -323,6 +351,9 @@ class Qwen3MoeModel(nn.Module):
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
parallel_config = vllm_config.parallel_config
|
||||
enable_eplb = parallel_config.enable_eplb
|
||||
self.num_redundant_experts = parallel_config.num_redundant_experts
|
||||
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
@ -336,7 +367,8 @@ class Qwen3MoeModel(nn.Module):
|
||||
lambda prefix: Qwen3MoeDecoderLayer(config=config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=prefix),
|
||||
prefix=prefix,
|
||||
enable_eplb=enable_eplb),
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
@ -382,7 +414,8 @@ class Qwen3MoeModel(nn.Module):
|
||||
ckpt_gate_proj_name="gate_proj",
|
||||
ckpt_down_proj_name="down_proj",
|
||||
ckpt_up_proj_name="up_proj",
|
||||
num_experts=self.config.num_experts)
|
||||
num_experts=self.config.num_experts,
|
||||
num_redundant_experts=self.num_redundant_experts)
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
@ -433,27 +466,51 @@ class Qwen3MoeModel(nn.Module):
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
is_expert_weight = False
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
|
||||
# Anyway, this is an expert weight and should not be
|
||||
# attempted to load as other weights later
|
||||
is_expert_weight = True
|
||||
|
||||
# Do not modify `name` since the loop may continue here
|
||||
# Instead, create a new variable
|
||||
name_mapped = name.replace(weight_name, param_name)
|
||||
|
||||
if is_pp_missing_parameter(name_mapped, self):
|
||||
continue
|
||||
|
||||
# Skip loading extra parameters for GPTQ/modelopt models.
|
||||
if name.endswith(
|
||||
ignore_suffixes) and name not in params_dict:
|
||||
if name_mapped.endswith(
|
||||
ignore_suffixes
|
||||
) and name_mapped not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id)
|
||||
break
|
||||
|
||||
param = params_dict[name_mapped]
|
||||
# We should ask the weight loader to return success or not
|
||||
# here since otherwise we may skip experts with other
|
||||
# available replicas.
|
||||
weight_loader = typing.cast(Callable[..., bool],
|
||||
param.weight_loader)
|
||||
success = weight_loader(param,
|
||||
loaded_weight,
|
||||
name_mapped,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id,
|
||||
return_success=True)
|
||||
if success:
|
||||
name = name_mapped
|
||||
break
|
||||
else:
|
||||
if is_expert_weight:
|
||||
# We've checked that this is an expert weight
|
||||
# However it's not mapped locally to this rank
|
||||
# So we simply skip it
|
||||
continue
|
||||
|
||||
# Skip loading extra parameters for GPTQ/modelopt models.
|
||||
if name.endswith(
|
||||
ignore_suffixes) and name not in params_dict:
|
||||
@ -482,7 +539,8 @@ class Qwen3MoeModel(nn.Module):
|
||||
return loaded_params
|
||||
|
||||
|
||||
class Qwen3MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
class Qwen3MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA,
|
||||
MixtureOfExperts):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
@ -514,6 +572,66 @@ class Qwen3MoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
# Set MoE hyperparameters
|
||||
self.expert_weights = []
|
||||
|
||||
self.moe_layers: list[FusedMoE] = []
|
||||
example_layer = None
|
||||
for layer in self.model.layers:
|
||||
if isinstance(layer, PPMissingLayer):
|
||||
continue
|
||||
|
||||
assert isinstance(layer, Qwen3MoeDecoderLayer)
|
||||
if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
|
||||
example_layer = layer.mlp
|
||||
self.moe_layers.append(layer.mlp.experts)
|
||||
|
||||
if example_layer is None:
|
||||
raise RuntimeError("No Qwen3MoE layer found in the model.layers.")
|
||||
|
||||
self.num_moe_layers = len(self.moe_layers)
|
||||
self.num_expert_groups = 1
|
||||
self.num_shared_experts = 0
|
||||
self.num_logical_experts = example_layer.n_logical_experts
|
||||
self.num_physical_experts = example_layer.n_physical_experts
|
||||
self.num_local_physical_experts = example_layer.n_local_physical_experts
|
||||
self.num_routed_experts = example_layer.n_routed_experts
|
||||
self.num_redundant_experts = example_layer.n_redundant_experts
|
||||
|
||||
def set_eplb_state(
|
||||
self,
|
||||
expert_load_view: torch.Tensor,
|
||||
logical_to_physical_map: torch.Tensor,
|
||||
logical_replica_count: torch.Tensor,
|
||||
) -> None:
|
||||
for layer_idx, layer in enumerate(self.moe_layers):
|
||||
# Register the expert weights.
|
||||
self.expert_weights.append(layer.get_expert_weights())
|
||||
layer.set_eplb_state(
|
||||
moe_layer_idx=layer_idx,
|
||||
expert_load_view=expert_load_view,
|
||||
logical_to_physical_map=logical_to_physical_map,
|
||||
logical_replica_count=logical_replica_count,
|
||||
)
|
||||
|
||||
def update_physical_experts_metadata(
|
||||
self,
|
||||
num_physical_experts: int,
|
||||
num_local_physical_experts: int,
|
||||
) -> None:
|
||||
assert self.num_local_physical_experts == num_local_physical_experts
|
||||
self.num_physical_experts = num_physical_experts
|
||||
self.num_local_physical_experts = num_local_physical_experts
|
||||
self.num_redundant_experts = (num_physical_experts -
|
||||
self.num_logical_experts)
|
||||
for layer in self.model.layers:
|
||||
if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
|
||||
moe = layer.mlp
|
||||
moe.n_local_physical_experts = num_local_physical_experts
|
||||
moe.n_physical_experts = num_physical_experts
|
||||
moe.n_redundant_experts = self.num_redundant_experts
|
||||
moe.experts.update_expert_map()
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user