[Attention][V1] Toggle for v1 attention backend (#18275)

Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
This commit is contained in:
Gregory Shtrasberg 2025-05-29 10:48:24 -04:00 committed by GitHub
parent c9479b2920
commit da4b69d0b4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 20 additions and 9 deletions

View File

@ -264,8 +264,8 @@ def chunked_prefill_paged_decode(
# Conversion of FP8 Tensor from uint8 storage to
# appropriate torch.dtype for interpretation by Triton
if "fp8" in kv_cache_dtype:
assert key_cache.dtype == torch.uint8
assert value_cache.dtype == torch.uint8
assert key_cache.dtype in [torch.uint8, current_platform.fp8_dtype()]
assert value_cache.dtype in [torch.uint8, current_platform.fp8_dtype()]
if kv_cache_dtype in ("fp8", "fp8_e4m3"):
target_dtype = current_platform.fp8_dtype()

View File

@ -744,8 +744,8 @@ def context_attention_fwd(q,
# Conversion of FP8 Tensor from uint8 storage to
# appropriate torch.dtype for interpretation by Triton
if "fp8" in kv_cache_dtype:
assert (k_cache.dtype == torch.uint8)
assert (v_cache.dtype == torch.uint8)
assert k_cache.dtype in [torch.uint8, current_platform.fp8_dtype()]
assert v_cache.dtype in [torch.uint8, current_platform.fp8_dtype()]
if kv_cache_dtype in ("fp8", "fp8_e4m3"):
target_dtype = current_platform.fp8_dtype()

View File

@ -15,6 +15,7 @@ if TYPE_CHECKING:
VLLM_NCCL_SO_PATH: Optional[str] = None
LD_LIBRARY_PATH: Optional[str] = None
VLLM_USE_TRITON_FLASH_ATTN: bool = False
VLLM_V1_USE_PREFILL_DECODE_ATTENTION: bool = False
VLLM_FLASH_ATTN_VERSION: Optional[int] = None
LOCAL_RANK: int = 0
CUDA_VISIBLE_DEVICES: Optional[str] = None
@ -290,6 +291,13 @@ environment_variables: dict[str, Callable[[], Any]] = {
lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
("true", "1")),
# Use separate prefill and decode kernels for V1 attention instead of
# the unified triton kernel.
"VLLM_V1_USE_PREFILL_DECODE_ATTENTION":
lambda:
(os.getenv("VLLM_V1_USE_PREFILL_DECODE_ATTENTION", "False").lower() in
("true", "1")),
# Force vllm to use a specific flash-attention version (2 or 3), only valid
# when using the flash-attention backend.
"VLLM_FLASH_ATTN_VERSION":
@ -323,8 +331,8 @@ environment_variables: dict[str, Callable[[], Any]] = {
# Whether to log responses from API Server for debugging
"VLLM_DEBUG_LOG_API_SERVER_RESPONSE":
lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False").
lower() == "true",
lambda: os.environ.get("VLLM_DEBUG_LOG_API_SERVER_RESPONSE", "False"
).lower() == "true",
# S3 access information, used for tensorizer to load model from S3
"S3_ACCESS_KEY_ID":

View File

@ -5,6 +5,7 @@ from typing import TYPE_CHECKING, Any, Optional
import torch
from vllm import _custom_ops as ops
from vllm import envs
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionMetadata, AttentionType)
from vllm.attention.ops.chunked_prefill_paged_decode import (
@ -126,6 +127,8 @@ class TritonAttentionImpl(AttentionImpl):
"TritonAttentionImpl")
self.fp8_dtype = current_platform.fp8_dtype()
self.force_prefill_decode_attn = \
envs.VLLM_V1_USE_PREFILL_DECODE_ATTENTION
def forward(
self,
@ -166,9 +169,9 @@ class TritonAttentionImpl(AttentionImpl):
# performance to make sure it does not introduce any overhead.
num_queries_per_kv = query.shape[1] // key.shape[1]
use_prefill_decode_attn = (num_queries_per_kv &
(num_queries_per_kv - 1)) != 0
num_q_is_pow2 = (num_queries_per_kv & (num_queries_per_kv - 1)) == 0
use_prefill_decode_attn = (self.force_prefill_decode_attn
or not num_q_is_pow2)
num_actual_tokens = attn_metadata.num_actual_tokens
if use_prefill_decode_attn: