mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 16:24:56 +08:00
[Bugfix] Fix LoRA test (#18518)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
parent
51797775c3
commit
db5a29ba19
@ -69,7 +69,7 @@ def test_lora_functions_sync():
|
||||
run_check(llm.add_lora, make_lora_request(12), [12, 9, 10, 11])
|
||||
run_check(llm.add_lora, make_lora_request(13), [12, 13, 10, 11])
|
||||
|
||||
# Remove all LoRAs
|
||||
# Remove all LoRAs.
|
||||
run_check(llm.remove_lora, 13, [12, 10, 11])
|
||||
run_check(llm.remove_lora, 12, [10, 11])
|
||||
run_check(llm.remove_lora, 11, [10])
|
||||
|
||||
@ -16,31 +16,40 @@ VOCAB_SIZE = 128 * 1024
|
||||
FLASHINFER_ENABLED = current_platform.is_cuda() and is_flashinfer_available
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def reset_default_device():
|
||||
"""
|
||||
Explicitly set the default device, which can affect subsequent tests.
|
||||
Adding this fixture helps avoid this problem.
|
||||
"""
|
||||
original_device = torch.get_default_device()
|
||||
yield
|
||||
torch.set_default_device(original_device)
|
||||
|
||||
|
||||
def test_topk_impl_equivalance():
|
||||
|
||||
with torch.device(DEVICE):
|
||||
generator = Generator(device=DEVICE).manual_seed(33)
|
||||
torch.set_default_device(DEVICE)
|
||||
generator = Generator(device=DEVICE).manual_seed(33)
|
||||
|
||||
logits = torch.rand((BATCH_SIZE, VOCAB_SIZE), generator=generator)
|
||||
logits = torch.rand((BATCH_SIZE, VOCAB_SIZE), generator=generator)
|
||||
|
||||
# Random top-k values between 1 and 9.
|
||||
k = torch.randint(1, 10, (BATCH_SIZE, ), generator=generator)
|
||||
# Random top-k values between 1 and 9.
|
||||
k = torch.randint(1, 10, (BATCH_SIZE, ), generator=generator)
|
||||
|
||||
# Set k=vocab_size for ~50% of requests in the batch (top-k disabled).
|
||||
k.masked_fill_(
|
||||
torch.randint(0,
|
||||
2, (BATCH_SIZE, ),
|
||||
generator=generator,
|
||||
dtype=bool), VOCAB_SIZE)
|
||||
# Set k=vocab_size for ~50% of requests in the batch (top-k disabled).
|
||||
k.masked_fill_(
|
||||
torch.randint(0, 2, (BATCH_SIZE, ), generator=generator, dtype=bool),
|
||||
VOCAB_SIZE)
|
||||
|
||||
# Top-k only implementation
|
||||
result1 = apply_top_k_top_p(logits=logits.clone(), k=k, p=None)
|
||||
# Top-k only implementation
|
||||
result1 = apply_top_k_top_p(logits=logits.clone(), k=k, p=None)
|
||||
|
||||
# Top-p + top-k
|
||||
no_op_top_p = torch.tensor([1.0])
|
||||
result2 = apply_top_k_top_p(logits=logits.clone(), k=k, p=no_op_top_p)
|
||||
# Top-p + top-k
|
||||
no_op_top_p = torch.tensor([1.0])
|
||||
result2 = apply_top_k_top_p(logits=logits.clone(), k=k, p=no_op_top_p)
|
||||
|
||||
assert torch.allclose(result1, result2)
|
||||
assert torch.allclose(result1, result2)
|
||||
|
||||
|
||||
def test_flashinfer_sampler():
|
||||
@ -58,50 +67,49 @@ def test_flashinfer_sampler():
|
||||
pytest.skip(
|
||||
"FlashInfer not installed or not available on this platform.")
|
||||
|
||||
with torch.device(DEVICE):
|
||||
generator = Generator(device=DEVICE).manual_seed(42)
|
||||
torch.set_default_device(DEVICE)
|
||||
generator = Generator(device=DEVICE).manual_seed(42)
|
||||
|
||||
# Generate random logits
|
||||
logits = torch.rand((BATCH_SIZE, VOCAB_SIZE), generator=generator)
|
||||
# Generate random logits
|
||||
logits = torch.rand((BATCH_SIZE, VOCAB_SIZE), generator=generator)
|
||||
|
||||
# Generate various top-k and top-p values
|
||||
k_values = torch.randint(1, 1000, (BATCH_SIZE, ), generator=generator)
|
||||
p_values = torch.rand(
|
||||
(BATCH_SIZE, ),
|
||||
generator=generator) * 0.5 + 0.5 # range in [0.5, 1.0]
|
||||
# Generate various top-k and top-p values
|
||||
k_values = torch.randint(1, 1000, (BATCH_SIZE, ), generator=generator)
|
||||
p_values = torch.rand(
|
||||
(BATCH_SIZE, ), generator=generator) * 0.5 + 0.5 # range in [0.5, 1.0]
|
||||
|
||||
# Sometimes disable top-k (k=vocab_size)
|
||||
k_values.masked_fill_(
|
||||
torch.randint(0,
|
||||
2, (BATCH_SIZE, ),
|
||||
generator=generator,
|
||||
dtype=torch.bool), VOCAB_SIZE)
|
||||
# Sometimes disable top-k (k=vocab_size)
|
||||
k_values.masked_fill_(
|
||||
torch.randint(0,
|
||||
2, (BATCH_SIZE, ),
|
||||
generator=generator,
|
||||
dtype=torch.bool), VOCAB_SIZE)
|
||||
|
||||
# Sometimes disable top-p (p=1.0)
|
||||
p_values.masked_fill_(
|
||||
torch.randint(0,
|
||||
2, (BATCH_SIZE, ),
|
||||
generator=generator,
|
||||
dtype=torch.bool), 1.0)
|
||||
# Sometimes disable top-p (p=1.0)
|
||||
p_values.masked_fill_(
|
||||
torch.randint(0,
|
||||
2, (BATCH_SIZE, ),
|
||||
generator=generator,
|
||||
dtype=torch.bool), 1.0)
|
||||
|
||||
python_logits = apply_top_k_top_p(
|
||||
logits=logits.clone(),
|
||||
k=k_values,
|
||||
p=p_values,
|
||||
)
|
||||
python_probs = torch.softmax(python_logits, dim=-1)
|
||||
python_logits = apply_top_k_top_p(
|
||||
logits=logits.clone(),
|
||||
k=k_values,
|
||||
p=p_values,
|
||||
)
|
||||
python_probs = torch.softmax(python_logits, dim=-1)
|
||||
|
||||
# FlashInfer only exposed renorm interfaces for probs so convert first
|
||||
flashinfer_probs = torch.softmax(logits.clone(), dim=-1)
|
||||
flashinfer_probs = top_k_renorm_probs(
|
||||
probs=flashinfer_probs,
|
||||
top_k=k_values,
|
||||
)
|
||||
flashinfer_probs = top_p_renorm_probs(
|
||||
probs=flashinfer_probs,
|
||||
top_p=p_values,
|
||||
)
|
||||
# FlashInfer only exposed renorm interfaces for probs so convert first
|
||||
flashinfer_probs = torch.softmax(logits.clone(), dim=-1)
|
||||
flashinfer_probs = top_k_renorm_probs(
|
||||
probs=flashinfer_probs,
|
||||
top_k=k_values,
|
||||
)
|
||||
flashinfer_probs = top_p_renorm_probs(
|
||||
probs=flashinfer_probs,
|
||||
top_p=p_values,
|
||||
)
|
||||
|
||||
# Compare the results
|
||||
assert torch.allclose(python_probs, flashinfer_probs, atol=2e-2), \
|
||||
"FlashInfer and Python sampling implementations do not match!"
|
||||
# Compare the results
|
||||
assert torch.allclose(python_probs, flashinfer_probs, atol=2e-2), \
|
||||
"FlashInfer and Python sampling implementations do not match!"
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user