mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 09:25:44 +08:00
[CI/Build] Delete LoRA bias test (#14849)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
parent
5952d8ab61
commit
e0fdfa1608
@ -173,11 +173,6 @@ def sql_lora_files(sql_lora_huggingface_id):
|
||||
return snapshot_download(repo_id=sql_lora_huggingface_id)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def lora_bias_files():
|
||||
return snapshot_download(repo_id="followumesh/granite-3b-lora8-bias")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def mixtral_lora_files():
|
||||
# Note: this module has incorrect adapter_config.json to test
|
||||
|
||||
@ -1,63 +0,0 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
import pytest
|
||||
|
||||
import vllm
|
||||
from vllm.lora.request import LoRARequest
|
||||
|
||||
MODEL_PATH = "ibm-granite/granite-3b-code-base"
|
||||
|
||||
|
||||
def do_sample(llm: vllm.LLM, lora_path: str, lora_id: int) -> list[str]:
|
||||
prompts = [
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE candidate (people_id VARCHAR, unsure_rate INTEGER); CREATE TABLE people (sex VARCHAR, people_id VARCHAR)\n\n question: which gender got the highest average uncertain ratio. [/user] [assistant]", # noqa: E501
|
||||
"[user] Write a SQL query to answer the question based on the table schema.\n\n context: CREATE TABLE table_28138035_4 (womens_doubles VARCHAR, mens_singles VARCHAR)\n\n question: Name the women's doubles for werner schlager [/user] [assistant]" # noqa: E501
|
||||
]
|
||||
sampling_params = vllm.SamplingParams(temperature=0,
|
||||
max_tokens=256,
|
||||
stop=["[/assistant]"])
|
||||
outputs = llm.generate(
|
||||
prompts,
|
||||
sampling_params,
|
||||
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
|
||||
if lora_id else None)
|
||||
generated_texts: list[str] = []
|
||||
for output in outputs:
|
||||
generated_text = output.outputs[0].text
|
||||
generated_texts.append(generated_text)
|
||||
return generated_texts
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def v1(run_with_both_engines_lora):
|
||||
# Simple autouse wrapper to run both engines for each test
|
||||
# This can be promoted up to conftest.py to run for every
|
||||
# test in a package
|
||||
pass
|
||||
|
||||
|
||||
# Skipping for V1 for now as we are hitting,
|
||||
# "Head size 80 is not supported by FlashAttention." error.
|
||||
@pytest.mark.skip_v1
|
||||
@pytest.mark.parametrize("lora_bias", [True])
|
||||
@pytest.mark.parametrize("fully_sharded", [True, False])
|
||||
def test_lora_bias(lora_bias_files: str, lora_bias: bool, fully_sharded: bool):
|
||||
llm = vllm.LLM(MODEL_PATH,
|
||||
enable_lora=True,
|
||||
max_num_seqs=16,
|
||||
max_lora_rank=8,
|
||||
max_loras=1,
|
||||
enable_lora_bias=lora_bias,
|
||||
tensor_parallel_size=1,
|
||||
fully_sharded_loras=fully_sharded)
|
||||
|
||||
print("lora adapter created")
|
||||
output1 = do_sample(llm, lora_bias_files, lora_id=0)
|
||||
|
||||
print("lora")
|
||||
output2 = do_sample(llm, lora_bias_files, lora_id=1)
|
||||
|
||||
if lora_bias:
|
||||
assert output1 != output2
|
||||
else:
|
||||
assert output1 == output2
|
||||
Loading…
x
Reference in New Issue
Block a user