mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-13 22:04:58 +08:00
[Model] Add Ernie4.5 and Ernie4.5MoE Model Support (#20220)
Signed-off-by: wangyafeng <wangyafeng@baidu.com>
This commit is contained in:
parent
ae9c4d416f
commit
e303dcf523
@ -330,6 +330,8 @@ Specified using `--task generate`.
|
|||||||
| `DeepseekV2ForCausalLM` | DeepSeek-V2 | `deepseek-ai/DeepSeek-V2`, `deepseek-ai/DeepSeek-V2-Chat` etc. | | ✅︎ | ✅︎ |
|
| `DeepseekV2ForCausalLM` | DeepSeek-V2 | `deepseek-ai/DeepSeek-V2`, `deepseek-ai/DeepSeek-V2-Chat` etc. | | ✅︎ | ✅︎ |
|
||||||
| `DeepseekV3ForCausalLM` | DeepSeek-V3 | `deepseek-ai/DeepSeek-V3-Base`, `deepseek-ai/DeepSeek-V3` etc. | | ✅︎ | ✅︎ |
|
| `DeepseekV3ForCausalLM` | DeepSeek-V3 | `deepseek-ai/DeepSeek-V3-Base`, `deepseek-ai/DeepSeek-V3` etc. | | ✅︎ | ✅︎ |
|
||||||
| `Dots1ForCausalLM` | dots.llm1 | `rednote-hilab/dots.llm1.base`, `rednote-hilab/dots.llm1.inst` etc. | | ✅︎ | ✅︎ |
|
| `Dots1ForCausalLM` | dots.llm1 | `rednote-hilab/dots.llm1.base`, `rednote-hilab/dots.llm1.inst` etc. | | ✅︎ | ✅︎ |
|
||||||
|
| `Ernie4_5_ForCausalLM` | Ernie4.5 | `baidu/ERNIE-4.5-0.3B-PT`,etc. | | ✅︎ | ✅︎ |
|
||||||
|
| `Ernie4_5_MoeForCausalLM` | Ernie4.5MoE | `baidu/ERNIE-4.5-21B-A3B-PT`, `baidu/ERNIE-4.5-300B-A47B-PT`, etc. | | ✅︎ | ✅︎ |
|
||||||
| `ExaoneForCausalLM` | EXAONE-3 | `LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
| `ExaoneForCausalLM` | EXAONE-3 | `LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||||
| `FalconForCausalLM` | Falcon | `tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc. | | ✅︎ | ✅︎ |
|
| `FalconForCausalLM` | Falcon | `tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc. | | ✅︎ | ✅︎ |
|
||||||
| `FalconMambaForCausalLM` | FalconMamba | `tiiuae/falcon-mamba-7b`, `tiiuae/falcon-mamba-7b-instruct`, etc. | | ✅︎ | ✅︎ |
|
| `FalconMambaForCausalLM` | FalconMamba | `tiiuae/falcon-mamba-7b`, `tiiuae/falcon-mamba-7b-instruct`, etc. | | ✅︎ | ✅︎ |
|
||||||
|
|||||||
@ -162,6 +162,10 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
|||||||
trust_remote_code=True),
|
trust_remote_code=True),
|
||||||
"DeepseekV3ForCausalLM": _HfExamplesInfo("deepseek-ai/DeepSeek-V3", # noqa: E501
|
"DeepseekV3ForCausalLM": _HfExamplesInfo("deepseek-ai/DeepSeek-V3", # noqa: E501
|
||||||
trust_remote_code=True),
|
trust_remote_code=True),
|
||||||
|
"Ernie4_5_ForCausalLM": _HfExamplesInfo("baidu/ERNIE-4.5-0.3B-PT",
|
||||||
|
trust_remote_code=True),
|
||||||
|
"Ernie4_5_MoeForCausalLM": _HfExamplesInfo("baidu/ERNIE-4.5-21B-A3B-PT",
|
||||||
|
trust_remote_code=True),
|
||||||
"ExaoneForCausalLM": _HfExamplesInfo("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"), # noqa: E501
|
"ExaoneForCausalLM": _HfExamplesInfo("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"), # noqa: E501
|
||||||
"Fairseq2LlamaForCausalLM": _HfExamplesInfo("mgleize/fairseq2-dummy-Llama-3.2-1B"), # noqa: E501
|
"Fairseq2LlamaForCausalLM": _HfExamplesInfo("mgleize/fairseq2-dummy-Llama-3.2-1B"), # noqa: E501
|
||||||
"FalconForCausalLM": _HfExamplesInfo("tiiuae/falcon-7b"),
|
"FalconForCausalLM": _HfExamplesInfo("tiiuae/falcon-7b"),
|
||||||
|
|||||||
43
vllm/model_executor/models/ernie45.py
Normal file
43
vllm/model_executor/models/ernie45.py
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
|
# Copyright 2025 The Baidu team.
|
||||||
|
# Copyright 2023 The vLLM team.
|
||||||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Inference-only Erine model compatible with HuggingFace weights."""
|
||||||
|
from vllm.config import VllmConfig
|
||||||
|
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||||
|
|
||||||
|
from .utils import PPMissingLayer
|
||||||
|
|
||||||
|
|
||||||
|
class Ernie4_5_ForCausalLM(LlamaForCausalLM):
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||||
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
||||||
|
# Hack Llama model to fit HF format Ernie4.5 dense implementation
|
||||||
|
# Attention difference between Ernie and Llama:
|
||||||
|
# 1. rotary_dim and no Neox style.
|
||||||
|
# 2. There is no bias for o_proj in attention
|
||||||
|
for layer in self.model.layers:
|
||||||
|
if not isinstance(layer, PPMissingLayer):
|
||||||
|
layer.self_attn.rotary_emb.is_neox_style = False
|
||||||
|
layer.self_attn.o_proj.bias = None
|
||||||
|
layer.self_attn.o_proj.skip_bias_add = True
|
||||||
583
vllm/model_executor/models/ernie45_moe.py
Normal file
583
vllm/model_executor/models/ernie45_moe.py
Normal file
@ -0,0 +1,583 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||||
|
|
||||||
|
# Copyright 2025 The Baidu team.
|
||||||
|
# Copyright 2023 The vLLM team.
|
||||||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Inference-only ErineMoE model compatible with HuggingFace weights."""
|
||||||
|
from collections.abc import Iterable
|
||||||
|
from typing import Any, Optional, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from transformers import PretrainedConfig
|
||||||
|
|
||||||
|
from vllm.attention import Attention
|
||||||
|
from vllm.compilation.decorators import support_torch_compile
|
||||||
|
from vllm.config import CacheConfig, VllmConfig
|
||||||
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||||
|
from vllm.logger import init_logger
|
||||||
|
from vllm.model_executor.layers.activation import SiluAndMul
|
||||||
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||||
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||||
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||||
|
QKVParallelLinear,
|
||||||
|
ReplicatedLinear,
|
||||||
|
RowParallelLinear)
|
||||||
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||||
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||||
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||||
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||||
|
ParallelLMHead, VocabParallelEmbedding)
|
||||||
|
from vllm.model_executor.model_loader.weight_utils import (
|
||||||
|
default_weight_loader, maybe_remap_kv_scale_name)
|
||||||
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||||
|
from vllm.sequence import IntermediateTensors
|
||||||
|
|
||||||
|
from .interfaces import SupportsPP
|
||||||
|
from .utils import (PPMissingLayer, extract_layer_index,
|
||||||
|
is_pp_missing_parameter,
|
||||||
|
make_empty_intermediate_tensors_factory, make_layers,
|
||||||
|
maybe_prefix)
|
||||||
|
|
||||||
|
logger = init_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class Ernie4_5_MoeMLP(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size: int,
|
||||||
|
intermediate_size: int,
|
||||||
|
hidden_act: str,
|
||||||
|
use_bias: bool = False,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
reduce_results: bool = True,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.gate_up_proj = MergedColumnParallelLinear(
|
||||||
|
hidden_size, [intermediate_size] * 2,
|
||||||
|
bias=use_bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.gate_up_proj")
|
||||||
|
self.down_proj = RowParallelLinear(intermediate_size,
|
||||||
|
hidden_size,
|
||||||
|
bias=use_bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
reduce_results=reduce_results,
|
||||||
|
prefix=f"{prefix}.down_proj")
|
||||||
|
if hidden_act != "silu":
|
||||||
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||||
|
"Only silu is supported for now.")
|
||||||
|
self.act_fn = SiluAndMul()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
gate_up, _ = self.gate_up_proj(x)
|
||||||
|
x = self.act_fn(gate_up)
|
||||||
|
x, _ = self.down_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Ernie4_5_MoeMoE(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: PretrainedConfig,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
layer_idx = extract_layer_index(prefix)
|
||||||
|
self.layer_idx = layer_idx
|
||||||
|
self.tp_size = get_tensor_model_parallel_world_size()
|
||||||
|
self.moe_num_shared_experts = getattr(config, "moe_num_shared_experts",
|
||||||
|
None)
|
||||||
|
|
||||||
|
if self.tp_size > config.moe_num_experts:
|
||||||
|
raise ValueError(
|
||||||
|
f"Tensor parallel size {self.tp_size} is greater than "
|
||||||
|
f"the number of experts {config.moe_num_experts}.")
|
||||||
|
|
||||||
|
self.gate = ReplicatedLinear(config.hidden_size,
|
||||||
|
config.moe_num_experts,
|
||||||
|
bias=False,
|
||||||
|
quant_config=None,
|
||||||
|
prefix=f"{prefix}.gate")
|
||||||
|
|
||||||
|
self.experts = FusedMoE(num_experts=config.moe_num_experts,
|
||||||
|
top_k=config.moe_k,
|
||||||
|
hidden_size=config.hidden_size,
|
||||||
|
intermediate_size=config.moe_intermediate_size,
|
||||||
|
reduce_results=False,
|
||||||
|
renormalize=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.experts")
|
||||||
|
|
||||||
|
if self.moe_num_shared_experts is not None:
|
||||||
|
intermediate_size = (config.moe_intermediate_size *
|
||||||
|
config.moe_num_shared_experts)
|
||||||
|
self.shared_experts = Ernie4_5_MoeMLP(
|
||||||
|
hidden_size=config.hidden_size,
|
||||||
|
intermediate_size=intermediate_size,
|
||||||
|
hidden_act=config.hidden_act,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.shared_experts",
|
||||||
|
reduce_results=self.experts.must_reduce_shared_expert_outputs(
|
||||||
|
))
|
||||||
|
|
||||||
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||||
|
orig_shape = hidden_states.shape
|
||||||
|
hidden_dim = hidden_states.shape[-1]
|
||||||
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
||||||
|
if self.moe_num_shared_experts is not None:
|
||||||
|
shared_output = self.shared_experts(hidden_states)
|
||||||
|
|
||||||
|
router_logits, _ = self.gate(hidden_states)
|
||||||
|
|
||||||
|
final_hidden_states = self.experts(hidden_states=hidden_states,
|
||||||
|
router_logits=router_logits)
|
||||||
|
|
||||||
|
if self.moe_num_shared_experts is not None and \
|
||||||
|
shared_output is not None:
|
||||||
|
final_hidden_states = final_hidden_states + shared_output
|
||||||
|
|
||||||
|
if self.tp_size > 1:
|
||||||
|
final_hidden_states = (
|
||||||
|
self.experts.maybe_all_reduce_tensor_model_parallel(
|
||||||
|
final_hidden_states))
|
||||||
|
|
||||||
|
return final_hidden_states.view(orig_shape)
|
||||||
|
|
||||||
|
|
||||||
|
class Ernie4_5_MoeAttention(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
hidden_size: int,
|
||||||
|
num_heads: int,
|
||||||
|
num_kv_heads: int,
|
||||||
|
head_dim: Optional[int] = None,
|
||||||
|
rope_theta: float = 500000,
|
||||||
|
rope_scaling: Optional[dict[str, Any]] = None,
|
||||||
|
max_position_embeddings: int = 131072,
|
||||||
|
rms_norm_eps: float = 1e-05,
|
||||||
|
qkv_bias: bool = False,
|
||||||
|
cache_config: Optional[CacheConfig] = None,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
layer_idx = extract_layer_index(prefix) if len(prefix) > 0 else 0
|
||||||
|
self.layer_idx = layer_idx
|
||||||
|
self.hidden_size = hidden_size
|
||||||
|
tp_size = get_tensor_model_parallel_world_size()
|
||||||
|
self.total_num_heads = num_heads
|
||||||
|
assert self.total_num_heads % tp_size == 0
|
||||||
|
self.num_heads = self.total_num_heads // tp_size
|
||||||
|
|
||||||
|
self.total_num_kv_heads = num_kv_heads
|
||||||
|
if self.total_num_kv_heads >= tp_size:
|
||||||
|
# Number of KV heads is greater than TP size, so we partition
|
||||||
|
# the KV heads across multiple tensor parallel GPUs.
|
||||||
|
assert self.total_num_kv_heads % tp_size == 0
|
||||||
|
else:
|
||||||
|
# Number of KV heads is less than TP size, so we replicate
|
||||||
|
# the KV heads across multiple tensor parallel GPUs.
|
||||||
|
assert tp_size % self.total_num_kv_heads == 0
|
||||||
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||||
|
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
|
||||||
|
|
||||||
|
self.q_size = self.num_heads * self.head_dim
|
||||||
|
self.kv_size = self.num_kv_heads * self.head_dim
|
||||||
|
self.scaling = self.head_dim**-0.5
|
||||||
|
self.rope_theta = rope_theta
|
||||||
|
self.max_position_embeddings = max_position_embeddings
|
||||||
|
|
||||||
|
self.qkv_proj = QKVParallelLinear(hidden_size,
|
||||||
|
self.head_dim,
|
||||||
|
self.total_num_heads,
|
||||||
|
self.total_num_kv_heads,
|
||||||
|
bias=qkv_bias,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.qkv_proj")
|
||||||
|
|
||||||
|
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
|
||||||
|
hidden_size,
|
||||||
|
bias=False,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.o_proj")
|
||||||
|
|
||||||
|
self.rotary_emb = get_rope(
|
||||||
|
self.head_dim,
|
||||||
|
rotary_dim=self.head_dim,
|
||||||
|
max_position=max_position_embeddings,
|
||||||
|
base=rope_theta,
|
||||||
|
is_neox_style=False,
|
||||||
|
rope_scaling=rope_scaling,
|
||||||
|
)
|
||||||
|
self.attn = Attention(self.num_heads,
|
||||||
|
self.head_dim,
|
||||||
|
self.scaling,
|
||||||
|
num_kv_heads=self.num_kv_heads,
|
||||||
|
cache_config=cache_config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.attn")
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
|
||||||
|
qkv, _ = self.qkv_proj(hidden_states)
|
||||||
|
|
||||||
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||||
|
q, k = self.rotary_emb(positions, q, k)
|
||||||
|
|
||||||
|
# Attention
|
||||||
|
attn_output = self.attn(q, k, v)
|
||||||
|
# Output projection
|
||||||
|
output, _ = self.o_proj(attn_output)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class Ernie4_5_MoeDecoderLayer(nn.Module):
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: PretrainedConfig,
|
||||||
|
cache_config: Optional[CacheConfig] = None,
|
||||||
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
|
) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_size = config.hidden_size
|
||||||
|
rope_theta = getattr(config, "rope_theta", 500000)
|
||||||
|
rope_scaling = getattr(config, "rope_scaling", None)
|
||||||
|
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||||
|
131072)
|
||||||
|
self.self_attn = Ernie4_5_MoeAttention(
|
||||||
|
hidden_size=self.hidden_size,
|
||||||
|
num_heads=config.num_attention_heads,
|
||||||
|
num_kv_heads=config.num_key_value_heads,
|
||||||
|
head_dim=getattr(config, 'head_dim', None),
|
||||||
|
rope_theta=rope_theta,
|
||||||
|
rope_scaling=rope_scaling,
|
||||||
|
max_position_embeddings=max_position_embeddings,
|
||||||
|
rms_norm_eps=config.rms_norm_eps,
|
||||||
|
qkv_bias=getattr(config, 'use_bias', False),
|
||||||
|
cache_config=cache_config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.self_attn",
|
||||||
|
)
|
||||||
|
|
||||||
|
layer_idx = extract_layer_index(prefix)
|
||||||
|
self.layer_idx = layer_idx
|
||||||
|
|
||||||
|
# MoE
|
||||||
|
moe_num_experts = getattr(config, "moe_num_experts", 0)
|
||||||
|
moe_layer_start_index = getattr(config, "moe_layer_start_index", 0)
|
||||||
|
moe_layer_end_index = getattr(config, "moe_layer_end_index",
|
||||||
|
config.num_hidden_layers - 1)
|
||||||
|
moe_layer_interval = getattr(config, "moe_layer_interval", 1)
|
||||||
|
use_moe = getattr(config, "use_moe", moe_num_experts > 0)
|
||||||
|
|
||||||
|
if (use_moe and ((layer_idx + 1) % moe_layer_interval == 0)
|
||||||
|
and layer_idx >= moe_layer_start_index
|
||||||
|
and layer_idx <= moe_layer_end_index):
|
||||||
|
self.mlp = Ernie4_5_MoeMoE(config=config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.mlp")
|
||||||
|
else:
|
||||||
|
self.mlp = Ernie4_5_MoeMLP(
|
||||||
|
hidden_size=config.hidden_size,
|
||||||
|
intermediate_size=config.intermediate_size,
|
||||||
|
hidden_act=config.hidden_act,
|
||||||
|
use_bias=getattr(config, 'use_bias', False),
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.mlp")
|
||||||
|
|
||||||
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||||
|
eps=config.rms_norm_eps)
|
||||||
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||||
|
eps=config.rms_norm_eps)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
residual: Optional[torch.Tensor],
|
||||||
|
) -> torch.Tensor:
|
||||||
|
|
||||||
|
# Self Attention
|
||||||
|
if residual is None:
|
||||||
|
residual = hidden_states
|
||||||
|
hidden_states = self.input_layernorm(hidden_states)
|
||||||
|
else:
|
||||||
|
hidden_states, residual = self.input_layernorm(
|
||||||
|
hidden_states, residual)
|
||||||
|
|
||||||
|
hidden_states = self.self_attn(
|
||||||
|
positions=positions,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Fully Connected
|
||||||
|
hidden_states, residual = self.post_attention_layernorm(
|
||||||
|
hidden_states, residual)
|
||||||
|
|
||||||
|
hidden_states = self.mlp(hidden_states)
|
||||||
|
|
||||||
|
return hidden_states, residual
|
||||||
|
|
||||||
|
|
||||||
|
@support_torch_compile
|
||||||
|
class Ernie4_5_MoeModel(nn.Module):
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
config = vllm_config.model_config.hf_config
|
||||||
|
cache_config = vllm_config.cache_config
|
||||||
|
quant_config = vllm_config.quant_config
|
||||||
|
|
||||||
|
self.padding_idx = config.pad_token_id
|
||||||
|
self.vocab_size = config.vocab_size
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
if get_pp_group().is_first_rank:
|
||||||
|
self.embed_tokens = VocabParallelEmbedding(
|
||||||
|
config.vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=f"{prefix}.embed_tokens")
|
||||||
|
else:
|
||||||
|
self.embed_tokens = PPMissingLayer()
|
||||||
|
|
||||||
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||||
|
config.num_hidden_layers,
|
||||||
|
lambda prefix: Ernie4_5_MoeDecoderLayer(config=config,
|
||||||
|
cache_config=cache_config,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=prefix),
|
||||||
|
prefix=f"{prefix}.layers",
|
||||||
|
)
|
||||||
|
|
||||||
|
if get_pp_group().is_last_rank:
|
||||||
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||||
|
else:
|
||||||
|
self.norm = PPMissingLayer()
|
||||||
|
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
make_empty_intermediate_tensors_factory(
|
||||||
|
["hidden_states", "residual"], config.hidden_size))
|
||||||
|
|
||||||
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||||||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||||
|
|
||||||
|
if get_pp_group().is_first_rank:
|
||||||
|
if inputs_embeds is not None:
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
else:
|
||||||
|
hidden_states = self.get_input_embeddings(input_ids)
|
||||||
|
residual = None
|
||||||
|
else:
|
||||||
|
assert intermediate_tensors is not None
|
||||||
|
hidden_states = intermediate_tensors["hidden_states"]
|
||||||
|
residual = intermediate_tensors["residual"]
|
||||||
|
|
||||||
|
for i in range(self.start_layer, self.end_layer):
|
||||||
|
layer = self.layers[i]
|
||||||
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
||||||
|
|
||||||
|
if not get_pp_group().is_last_rank:
|
||||||
|
return IntermediateTensors({
|
||||||
|
"hidden_states": hidden_states,
|
||||||
|
"residual": residual
|
||||||
|
})
|
||||||
|
|
||||||
|
hidden_states, _ = self.norm(hidden_states, residual)
|
||||||
|
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
|
class Ernie4_5_MoeForCausalLM(nn.Module, SupportsPP):
|
||||||
|
packed_modules_mapping = {
|
||||||
|
"qkv_proj": [
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
],
|
||||||
|
"gate_up_proj": [
|
||||||
|
"gate_proj",
|
||||||
|
"up_proj",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
fall_back_to_pt_during_load = False
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||||
|
super().__init__()
|
||||||
|
config = vllm_config.model_config.hf_config
|
||||||
|
quant_config = vllm_config.quant_config
|
||||||
|
self.config = config
|
||||||
|
self.quant_config = quant_config
|
||||||
|
self.model = Ernie4_5_MoeModel(vllm_config=vllm_config,
|
||||||
|
prefix=maybe_prefix(prefix, "model"))
|
||||||
|
|
||||||
|
if get_pp_group().is_last_rank:
|
||||||
|
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
quant_config=quant_config)
|
||||||
|
else:
|
||||||
|
self.lm_head = PPMissingLayer()
|
||||||
|
|
||||||
|
if self.config.tie_word_embeddings:
|
||||||
|
self.lm_head.weight = self.model.embed_tokens.weight
|
||||||
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
self.model.make_empty_intermediate_tensors)
|
||||||
|
|
||||||
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||||
|
return self.model.get_input_embeddings(input_ids)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||||||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||||
|
hidden_states = self.model(input_ids, positions, intermediate_tensors,
|
||||||
|
inputs_embeds)
|
||||||
|
return hidden_states
|
||||||
|
|
||||||
|
def compute_logits(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
sampling_metadata: SamplingMetadata,
|
||||||
|
) -> Optional[torch.Tensor]:
|
||||||
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||||
|
sampling_metadata)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
def load_weights(self, weights: Iterable[tuple[str,
|
||||||
|
torch.Tensor]]) -> set[str]:
|
||||||
|
stacked_params_mapping = [
|
||||||
|
# (param_name, shard_name, shard_id)
|
||||||
|
("qkv_proj", "q_proj", "q"),
|
||||||
|
("qkv_proj", "k_proj", "k"),
|
||||||
|
("qkv_proj", "v_proj", "v"),
|
||||||
|
("gate_up_proj", "gate_proj", 0),
|
||||||
|
("gate_up_proj", "up_proj", 1),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||||
|
# (param_name, weight_name, expert_id, shard_id)
|
||||||
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||||
|
ckpt_gate_proj_name="gate_proj",
|
||||||
|
ckpt_down_proj_name="down_proj",
|
||||||
|
ckpt_up_proj_name="up_proj",
|
||||||
|
num_experts=self.config.moe_num_experts)
|
||||||
|
|
||||||
|
params_dict = dict(self.named_parameters())
|
||||||
|
loaded_params: set[str] = set()
|
||||||
|
for name, loaded_weight in weights:
|
||||||
|
if self.config.tie_word_embeddings and name.endswith(
|
||||||
|
"lm_head.weight"):
|
||||||
|
continue
|
||||||
|
# MTP will be supported soon.
|
||||||
|
if "mtp" in name:
|
||||||
|
continue
|
||||||
|
|
||||||
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||||
|
# Skip non-stacked layers and experts (experts handled below).
|
||||||
|
if weight_name not in name:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if (("mlp.experts." in name) and name not in params_dict):
|
||||||
|
continue
|
||||||
|
name = name.replace(weight_name, param_name)
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||||
|
and name not in params_dict):
|
||||||
|
continue
|
||||||
|
# Skip layers on other devices.
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
|
|
||||||
|
param = params_dict[name]
|
||||||
|
weight_loader = param.weight_loader
|
||||||
|
weight_loader(param, loaded_weight, shard_id)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
for mapping in expert_params_mapping:
|
||||||
|
param_name, weight_name, expert_id, shard_id = mapping
|
||||||
|
|
||||||
|
if weight_name not in name:
|
||||||
|
continue
|
||||||
|
|
||||||
|
name = name.replace(weight_name, param_name)
|
||||||
|
# Skip layers on other devices.
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||||
|
and name not in params_dict):
|
||||||
|
continue
|
||||||
|
param = params_dict[name]
|
||||||
|
|
||||||
|
weight_loader = param.weight_loader
|
||||||
|
weight_loader(param,
|
||||||
|
loaded_weight,
|
||||||
|
name,
|
||||||
|
shard_id=shard_id,
|
||||||
|
expert_id=expert_id)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if ((name.endswith(".bias") or name.endswith("_bias"))
|
||||||
|
and name not in params_dict):
|
||||||
|
continue
|
||||||
|
# Skip layers on other devices.
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
|
# Remapping the name of FP8 kv-scale.
|
||||||
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||||
|
if name is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
param = params_dict[name]
|
||||||
|
weight_loader = getattr(param, "weight_loader",
|
||||||
|
default_weight_loader)
|
||||||
|
weight_loader(param, loaded_weight)
|
||||||
|
loaded_params.add(name)
|
||||||
|
return loaded_params
|
||||||
@ -53,6 +53,8 @@ _TEXT_GENERATION_MODELS = {
|
|||||||
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
|
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
|
||||||
"DeepseekV3ForCausalLM": ("deepseek_v2", "DeepseekV3ForCausalLM"),
|
"DeepseekV3ForCausalLM": ("deepseek_v2", "DeepseekV3ForCausalLM"),
|
||||||
"Dots1ForCausalLM": ("dots1", "Dots1ForCausalLM"),
|
"Dots1ForCausalLM": ("dots1", "Dots1ForCausalLM"),
|
||||||
|
"Ernie4_5_ForCausalLM": ("ernie45", "Ernie4_5_ForCausalLM"),
|
||||||
|
"Ernie4_5_MoeForCausalLM": ("ernie45_moe", "Ernie4_5_MoeForCausalLM"),
|
||||||
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
|
"ExaoneForCausalLM": ("exaone", "ExaoneForCausalLM"),
|
||||||
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||||
"Fairseq2LlamaForCausalLM": ("fairseq2_llama", "Fairseq2LlamaForCausalLM"),
|
"Fairseq2LlamaForCausalLM": ("fairseq2_llama", "Fairseq2LlamaForCausalLM"),
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user