[New Model]: nomic-embed-text-v2-moe (#17785)

This commit is contained in:
wang.yuqi 2025-05-11 15:59:43 +08:00 committed by GitHub
parent 06c0922a69
commit e4b8713380
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 899 additions and 364 deletions

View File

@ -622,7 +622,7 @@ Specified using `--task embed`.
* [PP](#distributed-serving)
- * `BertModel`
* BERT-based
* `BAAI/bge-base-en-v1.5`, etc.
* `BAAI/bge-base-en-v1.5`, `Snowflake/snowflake-arctic-embed-xs`, etc.
*
*
- * `Gemma2Model`
@ -635,6 +635,16 @@ Specified using `--task embed`.
* `parasail-ai/GritLM-7B-vllm`.
* ✅︎
* ✅︎
- * `GteModel`
* GteModel
* `Snowflake/snowflake-arctic-embed-m-v2.0`.
*
*
- * `NomicBertModel`
* NomicBertModel
* `nomic-ai/nomic-embed-text-v1`, `nomic-ai/nomic-embed-text-v2-moe`, `Snowflake/snowflake-arctic-embed-m-long`, etc.
*
*
- * `LlamaModel`, `LlamaForCausalLM`, `MistralModel`, etc.
* Llama-based
* `intfloat/e5-mistral-7b-instruct`, etc.
@ -647,12 +657,12 @@ Specified using `--task embed`.
* ✅︎
- * `RobertaModel`, `RobertaForMaskedLM`
* RoBERTa-based
* `sentence-transformers/all-roberta-large-v1`, `sentence-transformers/all-roberta-large-v1`, etc.
* `sentence-transformers/all-roberta-large-v1`, etc.
*
*
- * `XLMRobertaModel`
* XLM-RoBERTa-based
* `intfloat/multilingual-e5-large`, `jinaai/jina-reranker-v2-base-multilingual`, etc.
* `intfloat/multilingual-e5-large`, `jinaai/jina-reranker-v2-base-multilingual`, `Snowflake/snowflake-arctic-embed-l-v2.0`, `jinaai/jina-embeddings-v3`(see note), etc.
*
*
:::
@ -670,6 +680,10 @@ For both the 1.5B and 7B variants, you also need to enable `--trust-remote-code`
See [relevant issue on HF Transformers](https://github.com/huggingface/transformers/issues/34882).
:::
:::{note}
`jinaai/jina-embeddings-v3` supports multiple tasks through lora, while vllm temporarily only supports text-matching tasks by merging lora weights.
:::
If your model is not in the above list, we will try to automatically convert the model using
{func}`~vllm.model_executor.models.adapters.as_embedding_model`. By default, the embeddings
of the whole prompt are extracted from the normalized hidden state corresponding to the last token.

View File

@ -0,0 +1,111 @@
# SPDX-License-Identifier: Apache-2.0
import math
from collections.abc import Sequence
import mteb
import numpy as np
import pytest
from tests.models.utils import EmbedModelInfo
# Most models on the STS12 task (See #17175):
# - Model implementation and minor changes in tensor dtype
# results in differences less than 1e-4
# - Different model results in differences more than 1e-3
# 1e-4 is a good tolerance threshold
MTEB_EMBED_TASKS = ["STS12"]
MTEB_EMBED_TOL = 1e-4
class VllmMtebEncoder(mteb.Encoder):
def __init__(self, vllm_model):
super().__init__()
self.model = vllm_model
self.rng = np.random.default_rng(seed=42)
def encode(
self,
sentences: Sequence[str],
*args,
**kwargs,
) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
outputs = self.model.encode(sentences, use_tqdm=False)
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
class OpenAIClientMtebEncoder(mteb.Encoder):
def __init__(self, model_name: str, client):
super().__init__()
self.model_name = model_name
self.client = client
self.rng = np.random.default_rng(seed=42)
def encode(self, sentences: Sequence[str], *args, **kwargs) -> np.ndarray:
# Hoping to discover potential scheduling
# issues by randomizing the order.
r = self.rng.permutation(len(sentences))
sentences = [sentences[i] for i in r]
embeddings = self.client.embeddings.create(model=self.model_name,
input=sentences)
outputs = [d.embedding for d in embeddings.data]
embeds = np.array(outputs)
embeds = embeds[np.argsort(r)]
return embeds
def run_mteb_embed_task(encoder, tasks):
tasks = mteb.get_tasks(tasks=tasks)
evaluation = mteb.MTEB(tasks=tasks)
results = evaluation.run(encoder, verbosity=0, output_folder=None)
main_score = results[0].scores["test"][0]["main_score"]
return main_score
def run_mteb_embed_task_st(model_name, tasks):
from sentence_transformers import SentenceTransformer
model = SentenceTransformer(model_name)
return run_mteb_embed_task(model, tasks)
def mteb_test_embed_models(hf_runner, vllm_runner, model_info: EmbedModelInfo):
if not model_info.enable_test:
# A model family has many models with the same architecture,
# and we don't need to test each one.
pytest.skip("Skipping test.")
with vllm_runner(model_info.name,
task="embed",
max_model_len=None,
dtype=model_info.dtype) as vllm_model:
if model_info.architecture:
assert (model_info.architecture
in vllm_model.model.llm_engine.model_config.architectures)
vllm_main_score = run_mteb_embed_task(VllmMtebEncoder(vllm_model),
MTEB_EMBED_TASKS)
vllm_dtype = vllm_model.model.llm_engine.model_config.dtype
model_dtype = getattr(
vllm_model.model.llm_engine.model_config.hf_config, "torch_dtype",
vllm_dtype)
with hf_runner(model_info.name,
is_sentence_transformer=True,
dtype=model_dtype) as hf_model:
st_main_score = run_mteb_embed_task(hf_model, MTEB_EMBED_TASKS)
print("VLLM:", vllm_dtype, vllm_main_score)
print("SentenceTransformer:", model_dtype, st_main_score)
print("Difference:", st_main_score - vllm_main_score)
assert math.isclose(st_main_score, vllm_main_score, rel_tol=MTEB_EMBED_TOL)

View File

@ -0,0 +1,47 @@
# SPDX-License-Identifier: Apache-2.0
import pytest
from ...utils import EmbedModelInfo, run_embedding_correctness_test
MODELS = [
EmbedModelInfo("nomic-ai/nomic-embed-text-v1",
architecture="NomicBertModel",
dtype="float32",
enable_test=True),
EmbedModelInfo("nomic-ai/nomic-embed-text-v1.5",
architecture="NomicBertModel",
dtype="float32",
enable_test=False),
EmbedModelInfo("nomic-ai/nomic-embed-text-v2-moe",
architecture="NomicBertModel",
dtype="float32",
enable_test=True)
]
@pytest.mark.parametrize("model_info", MODELS)
def test_models_mteb(hf_runner, vllm_runner,
model_info: EmbedModelInfo) -> None:
from .mteb_utils import mteb_test_embed_models
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
@pytest.mark.parametrize("model_info", MODELS)
def test_models_correctness(hf_runner, vllm_runner, model_info: EmbedModelInfo,
example_prompts) -> None:
if not model_info.enable_test:
pytest.skip("Skipping test.")
with vllm_runner(model_info.name,
task="embed",
dtype=model_info.dtype,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.encode(example_prompts)
with hf_runner(
model_info.name,
dtype=model_info.dtype,
is_sentence_transformer=True,
) as hf_model:
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)

View File

@ -1,12 +1,8 @@
# SPDX-License-Identifier: Apache-2.0
import pytest
from ...utils import EmbedModelInfo, check_embeddings_close
EMBEDDING_PROMPTS = [
'what is snowflake?', 'Where can I get the best tacos?', 'The Data Cloud!',
'Mexico City of Course!'
]
from ...utils import EmbedModelInfo, run_embedding_correctness_test
MODELS = [
EmbedModelInfo("Snowflake/snowflake-arctic-embed-xs",
@ -45,51 +41,34 @@ MODELS = [
@pytest.mark.parametrize("model_info", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
def test_models(
def test_models_mteb(
hf_runner,
vllm_runner,
example_prompts,
model_info: EmbedModelInfo,
dtype: str,
monkeypatch,
) -> None:
from .mteb_utils import mteb_test_embed_models
mteb_test_embed_models(hf_runner, vllm_runner, model_info)
@pytest.mark.parametrize("model_info", MODELS)
def test_models_correctness(
hf_runner,
vllm_runner,
model_info: EmbedModelInfo,
example_prompts,
) -> None:
if not model_info.enable_test:
# A model family has many models with the same architecture,
# and we don't need to test each one.
pytest.skip("Skipping test.")
example_prompts = example_prompts + EMBEDDING_PROMPTS
vllm_extra_kwargs = {
"hf_overrides": {
"is_matryoshka": model_info.is_matryoshka
}
}
with hf_runner(model_info.name, dtype=dtype,
is_sentence_transformer=True) as hf_model:
hf_outputs = hf_model.encode(example_prompts)
with vllm_runner(model_info.name,
task="embed",
dtype=dtype,
max_model_len=None,
**vllm_extra_kwargs) as vllm_model:
assert (vllm_model.model.llm_engine.model_config.is_matryoshka ==
model_info.is_matryoshka)
if model_info.architecture:
assert (model_info.architecture
in vllm_model.model.llm_engine.model_config.architectures)
dtype=model_info.dtype,
max_model_len=None) as vllm_model:
vllm_outputs = vllm_model.encode(example_prompts)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
with hf_runner(
model_info.name,
dtype=model_info.dtype,
is_sentence_transformer=True,
) as hf_model:
run_embedding_correctness_test(hf_model, example_prompts, vllm_outputs)

View File

@ -332,9 +332,10 @@ def matryoshka_fy(tensor: torch.Tensor, dimensions: int):
class EmbedModelInfo(NamedTuple):
name: str
is_matryoshka: bool
is_matryoshka: bool = False
matryoshka_dimensions: Optional[list[int]] = None
architecture: str = ""
dtype: str = "auto"
enable_test: bool = True

View File

@ -11,16 +11,13 @@ from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, PoolerConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.activation import (get_act_and_mul_fn,
get_act_fn)
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.pooler import (CrossEncodingPooler, Pooler,
PoolingType)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
@ -41,24 +38,19 @@ class BertEmbedding(nn.Module):
self.size = config.hidden_size
self.word_embeddings = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.position_embeddings = VocabParallelEmbedding(
config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = VocabParallelEmbedding(
config.type_vocab_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.position_ids = nn.Parameter(
torch.empty((1, config.max_position_embeddings)), )
self.position_embedding_type = config.position_embedding_type
if self.position_embedding_type == "absolute":
self.position_embeddings = VocabParallelEmbedding(
config.max_position_embeddings, config.hidden_size)
self.position_ids = nn.Parameter(
torch.empty((1, config.max_position_embeddings)), )
elif self.position_embedding_type == "rotary":
self.position_embeddings = None
self.position_ids = None
else:
raise ValueError("Only 'absolute' and 'rotary' " +
"position_embedding_type is supported")
if self.position_embedding_type != "absolute":
raise ValueError("Only 'absolute' position_embedding_type" +
" is supported")
def forward(
self,
@ -72,6 +64,9 @@ class BertEmbedding(nn.Module):
# Input embeddings.
inputs_embeds = self.word_embeddings(input_ids)
# Position embeddings.
position_embeddings = self.position_embeddings(position_ids)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape,
dtype=torch.long,
@ -79,12 +74,7 @@ class BertEmbedding(nn.Module):
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = inputs_embeds + token_type_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
return embeddings
@ -108,11 +98,7 @@ class BertPooler(nn.Module):
@support_torch_compile
class BertEncoder(nn.Module):
def __init__(self,
vllm_config: VllmConfig,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = ""):
def __init__(self, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
@ -121,19 +107,16 @@ class BertEncoder(nn.Module):
BertLayer(config=config,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.layer.{layer_idx}")
for layer_idx in range(config.num_hidden_layers)
])
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
for layer in self.layer:
hidden_states = layer(positions, hidden_states)
hidden_states = layer(hidden_states)
return hidden_states
@ -143,8 +126,6 @@ class BertLayer(nn.Module):
config: BertConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = ""):
super().__init__()
@ -154,36 +135,23 @@ class BertLayer(nn.Module):
layer_norm_eps=config.layer_norm_eps,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.attention")
if config.hidden_act in ["silu", "gelu_and_mul"]:
self.intermediate = BertGatedIntermediate(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.intermediate")
else:
self.intermediate = BertIntermediate(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.intermediate")
self.intermediate = BertIntermediate(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.intermediate")
self.output = BertOutput(hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
layer_norm_eps=config.layer_norm_eps,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.output")
def forward(self, positions: torch.Tensor, hidden_states: torch.Tensor):
attn_output = self.attention(positions, hidden_states)
def forward(self, hidden_states: torch.Tensor):
attn_output = self.attention(hidden_states)
intermediate_output = self.intermediate(attn_output)
output = self.output(intermediate_output, attn_output)
return output
@ -198,8 +166,6 @@ class BertAttention(nn.Module):
layer_norm_eps: float,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
):
super().__init__()
@ -208,22 +174,18 @@ class BertAttention(nn.Module):
num_attention_heads=num_attention_heads,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.output")
self.output = BertSelfOutput(hidden_size=hidden_size,
layer_norm_eps=layer_norm_eps,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.output")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
self_output = self.self(positions, hidden_states)
self_output = self.self(hidden_states)
return self.output(self_output, hidden_states)
@ -235,8 +197,6 @@ class BertSelfAttention(nn.Module):
num_attention_heads: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
):
super().__init__()
@ -261,15 +221,10 @@ class BertSelfAttention(nn.Module):
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj")
if rotary_kwargs:
self.rotary_emb = get_rope(**rotary_kwargs)
else:
self.rotary_emb = None
self.attn = Attention(num_heads=self.num_heads,
head_size=self.head_dim,
scale=self.scaling,
@ -281,15 +236,10 @@ class BertSelfAttention(nn.Module):
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.rotary_emb:
q, k = self.rotary_emb(positions, q, k)
output = self.attn(q, k, v)
return output
@ -299,13 +249,12 @@ class BertSelfOutput(nn.Module):
def __init__(self,
hidden_size: int,
layer_norm_eps: float,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.dense = RowParallelLinear(input_size=hidden_size,
output_size=hidden_size,
bias=bias,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.dense")
self.LayerNorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
@ -323,13 +272,12 @@ class BertIntermediate(nn.Module):
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.dense = ColumnParallelLinear(input_size=hidden_size,
output_size=intermediate_size,
bias=bias,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.dense")
self.intermediate_act_fn = get_act_fn(hidden_act)
@ -340,46 +288,19 @@ class BertIntermediate(nn.Module):
return hidden_states
class BertGatedIntermediate(nn.Module):
# for NomciBert and GteModel
def __init__(self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.act_fn = get_act_and_mul_fn(hidden_act)
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(hidden_states)
hidden_states = self.act_fn(gate_up)
return hidden_states
class BertOutput(nn.Module):
def __init__(self,
hidden_size: int,
intermediate_size: int,
layer_norm_eps: float,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.dense = RowParallelLinear(input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.dense")
@ -393,33 +314,18 @@ class BertOutput(nn.Module):
class BertModel(nn.Module, SupportsQuant):
packed_modules_mapping = {
"qkv_proj": ["query", "key", "value"],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
packed_modules_mapping = {"qkv_proj": ["query", "key", "value"]}
def __init__(self,
*,
vllm_config: VllmConfig,
prefix: str = "",
embedding_class: type = BertEmbedding,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
add_pooling_layer: bool = False):
super().__init__()
"""
For BertModel, all linear layers have bias.
For NomicBertModel, all linear layers do not have bias.
"""
config = vllm_config.model_config.hf_config
self.embeddings = embedding_class(config)
self.encoder = BertEncoder(vllm_config=vllm_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.encoder")
self.pooler = BertPooler(config) if add_pooling_layer else None
@ -441,7 +347,7 @@ class BertModel(nn.Module, SupportsQuant):
seq_lens=attn_metadata.seq_lens_tensor,
position_ids=position_ids,
token_type_ids=token_type_ids)
return self.encoder(position_ids, hidden_states)
return self.encoder(hidden_states)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
@ -450,8 +356,6 @@ class BertModel(nn.Module, SupportsQuant):
("qkv_proj", "query", "q"),
("qkv_proj", "key", "k"),
("qkv_proj", "value", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
@ -497,7 +401,6 @@ class BertEmbeddingModel(nn.Module, SupportsV0Only, SupportsQuant):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
pooler_config = vllm_config.model_config.pooler_config
self.config = vllm_config.model_config.hf_config
self.model = self._build_model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self._pooler = self._build_pooler(pooler_config)
@ -611,115 +514,3 @@ class BertForSequenceClassification(nn.Module, SupportsCrossEncoding,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors,
token_type_ids=token_type_ids)
class NomicBertEmbeddingModel(BertEmbeddingModel):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"layers": "layer",
"attn.Wqkv": "attention.self.qkv_proj",
"attn.out_proj": "attention.output.dense",
'norm1': "attention.output.LayerNorm",
'mlp.fc11': "intermediate.up_proj",
'mlp.fc12': "intermediate.gate_proj",
'mlp.fc2': "output.dense",
'norm2': "output.LayerNorm",
})
def _build_model(self,
vllm_config: VllmConfig,
prefix: str = "") -> BertModel:
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "NomicBertConfig"
assert config.activation_function == "swiglu"
# Assume NomicBertModel all linear layers do not have bias
assert not config.mlp_fc1_bias
assert not config.mlp_fc2_bias
assert not config.qkv_proj_bias
config.layer_norm_eps = config.layer_norm_epsilon
config.position_embedding_type = "rotary"
config.intermediate_size = config.n_inner
config.hidden_act = "silu"
config.hidden_size = config.n_embd
config.num_hidden_layers = config.n_layer
head_dim = config.hidden_size // config.num_attention_heads
rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_trained_positions,
"base": config.rotary_emb_base,
"rope_scaling": {
"rope_type": "dynamic",
"factor": config.rotary_scaling_factor
}
}
return BertModel(vllm_config=vllm_config,
prefix=prefix,
bias=False,
rotary_kwargs=rotary_kwargs,
embedding_class=BertEmbedding)
class GteEmbeddingModel(BertEmbeddingModel):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"attention.qkv_proj": "attention.self.qkv_proj",
"attention.o_proj": "attention.output.dense",
'attn_ln': "attention.output.LayerNorm",
'mlp.down_proj': "output.dense",
'mlp_ln': "output.LayerNorm",
})
def _build_model(self,
vllm_config: VllmConfig,
prefix: str = "") -> BertModel:
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "GteConfig"
assert config.position_embedding_type == "rope"
assert config.hidden_act == "gelu"
config.position_embedding_type = "rotary"
config.hidden_act = "gelu_and_mul"
head_dim = config.hidden_size // config.num_attention_heads
rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_position_embeddings,
"base": config.rope_theta,
}
model = BertModel(vllm_config=vllm_config,
prefix=prefix,
rotary_kwargs=rotary_kwargs,
embedding_class=BertEmbedding)
# GteModel only gate_up_proj does not have bias.
# Hack method learned from vllm/model_executor/models/glm.py
for layer in model.encoder.layer:
layer.intermediate.gate_up_proj.bias = None
layer.intermediate.skip_bias_add = True
return model
def split_up_gate_proj(self, weights: Iterable[Tuple[str, torch.Tensor]]):
n = "mlp.up_gate_proj"
for name, weight in weights:
if n in name:
up, gate = weight.chunk(2, dim=0)
yield name.replace(n, "intermediate.up_proj"), up
yield name.replace(n, "intermediate.gate_proj"), gate
else:
yield name, weight
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
weights = self.hf_to_vllm_mapper.apply(weights)
weights = self.split_up_gate_proj(weights)
self.model.load_weights(weights)

View File

@ -0,0 +1,652 @@
# SPDX-License-Identifier: Apache-2.0
from typing import Iterable, Optional, Set, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention, AttentionType
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import (get_act_and_mul_fn,
get_act_fn)
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models import SupportsV0Only
from vllm.model_executor.models.interfaces import SupportsQuant
from vllm.model_executor.models.utils import WeightsMapper
from vllm.sequence import IntermediateTensors
class BertWithRopeEmbedding(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
assert config.type_vocab_size > 0
self.word_embeddings = VocabParallelEmbedding(config.vocab_size,
config.hidden_size)
self.token_type_embeddings = VocabParallelEmbedding(
config.type_vocab_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
input_shape = input_ids.size()
inputs_embeds = self.word_embeddings(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape,
dtype=torch.long,
device=inputs_embeds.device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
return embeddings
class BertWithRopeAttention(nn.Module):
def __init__(
self,
hidden_size: int,
num_attention_heads: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_attention_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = self.total_num_heads
self.head_dim = self.hidden_size // self.total_num_heads
assert self.head_dim * self.total_num_heads == self.hidden_size
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.qkv_proj = QKVParallelLinear(
hidden_size=self.hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj")
self.rotary_emb = get_rope(**rotary_kwargs)
self.attn = Attention(num_heads=self.num_heads,
head_size=self.head_dim,
scale=self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
attn_type=AttentionType.ENCODER_ONLY)
self.out_proj = RowParallelLinear(input_size=hidden_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.dense")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.out_proj(attn_output)
return output
class BertWithRopeGatedMLP(nn.Module):
def __init__(self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.act_fn = get_act_and_mul_fn(hidden_act)
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(hidden_states)
hidden_states = self.act_fn(gate_up)
hidden_states, _ = self.down_proj(hidden_states)
return hidden_states
class BertWithRopeMLP(nn.Module):
def __init__(self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.act_fn = get_act_fn(hidden_act)
self.up_proj = ColumnParallelLinear(input_size=hidden_size,
output_size=intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.up_proj")
self.down_proj = RowParallelLinear(input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj")
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states, _ = self.up_proj(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states, _ = self.down_proj(hidden_states)
return hidden_states
class NomicRouter(nn.Module):
def __init__(self, hidden_size: int, moe_num_experts: int, moe_top_k: int):
super().__init__()
self.moe_top_k = moe_top_k
self.layer = ReplicatedLinear(hidden_size, moe_num_experts, bias=False)
def forward(
self, x: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
weights = self.layer(x.view(-1, x.shape[-1]))[0].softmax(
dim=-1, dtype=torch.float32)
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
weights = weights.to(x.dtype)
top_weights = top_weights.to(x.dtype)
return weights, top_weights, top_experts # type: ignore
class NomicExpertMLP(nn.Module):
def __init__(self, hidden_size: int, ffn_hidden_size: int,
moe_num_experts: int, ffn_act_fn: str):
super().__init__()
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.moe_num_experts = moe_num_experts
self.w1 = nn.Parameter(
torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
self.w2 = nn.Parameter(
torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
self.activation_fn = get_act_fn(ffn_act_fn)
def forward(self, x: torch.Tensor, expert_idx: int) -> torch.Tensor:
expert_w1 = self.w1.view(self.moe_num_experts, self.ffn_hidden_size,
self.hidden_size)[expert_idx]
expert_w2 = self.w2.view(self.moe_num_experts, self.ffn_hidden_size,
self.hidden_size)[expert_idx]
x1 = x.matmul(expert_w1.t())
act_out = self.activation_fn(x1)
x2 = act_out.matmul(expert_w2)
return x2
class NomicExperts(nn.Module):
def __init__(self, config, hidden_size: int, ffn_hidden_size: int,
moe_num_experts: int):
super().__init__()
self.moe_num_experts = moe_num_experts
self.mlp = NomicExpertMLP(hidden_size=config.n_embd,
ffn_hidden_size=config.n_inner,
moe_num_experts=moe_num_experts,
ffn_act_fn=config.hidden_act)
self.bias = nn.Parameter(torch.zeros(config.n_embd))
def forward(self, x: torch.Tensor, weights: torch.Tensor,
top_weights: torch.Tensor,
top_experts: torch.LongTensor) -> torch.Tensor:
q_len, hidden_size = x.shape
x = x.view(-1, hidden_size)
out = torch.zeros_like(x)
expert_mask = nn.functional.one_hot(
top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
for expert_idx in range(0, self.moe_num_experts):
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
if token_idx.shape[0] == 0:
continue
token_list = token_idx.tolist()
topk_list = topk_idx.tolist()
expert_tokens = x[None, token_list].reshape(-1, hidden_size)
expert_out = self.mlp(
expert_tokens, expert_idx) * top_weights[token_list, topk_list,
None]
out.index_add_(0, token_idx, expert_out)
out = out.reshape(q_len, hidden_size)
return out + self.bias
class NomicMoELayer(nn.Module):
def __init__(self, config: PretrainedConfig):
super().__init__()
self.router = NomicRouter(
config.n_embd,
moe_num_experts=config.num_experts,
moe_top_k=config.moe_top_k,
)
self.experts = NomicExperts(
config,
hidden_size=config.n_embd,
ffn_hidden_size=config.n_inner,
moe_num_experts=config.num_experts,
)
def forward(self, x: torch.Tensor):
weights, top_weights, top_experts = self.router(x)
out = self.experts(x, weights, top_weights, top_experts)
return out
class BertWithRopeBlock(nn.Module):
def __init__(self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
moe: bool = False,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = ""):
super().__init__()
self.attn = BertWithRopeAttention(
hidden_size=config.hidden_size,
num_attention_heads=config.num_attention_heads,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.attention")
if moe:
self.mlp = NomicMoELayer(config=config, )
else:
if config.hidden_act in ["silu", "gelu_and_mul"]:
self.mlp = BertWithRopeGatedMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
else:
self.mlp = BertWithRopeMLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.mlp")
self.attn_ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
self.mlp_ln = nn.LayerNorm(config.hidden_size,
eps=config.layer_norm_eps)
def forward(self, positions: torch.Tensor, hidden_states: torch.Tensor):
attn_output = self.attn(positions, hidden_states)
hidden_states = self.attn_ln(hidden_states + attn_output)
mlp_out = self.mlp(hidden_states)
hidden_states = self.mlp_ln(hidden_states + mlp_out)
return hidden_states
@support_torch_compile
class BertWithRopeEncoder(nn.Module):
def __init__(self,
vllm_config: VllmConfig,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
every_n = getattr(config, "moe_every_n_layers", 0)
self.layers = nn.ModuleList([
BertWithRopeBlock(config=config,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
moe=every_n > 0 and (layer_idx % every_n == 1),
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.layer.{layer_idx}")
for layer_idx in range(config.num_hidden_layers)
])
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
for layer in self.layers:
hidden_states = layer(positions, hidden_states)
return hidden_states
class BertWithRope(nn.Module, SupportsV0Only, SupportsQuant):
hf_to_vllm_mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
self.config = self.config_verify(vllm_config)
self.embeddings = BertWithRopeEmbedding(self.config)
self.encoder = BertWithRopeEncoder(
vllm_config=vllm_config,
bias=getattr(self.config, "bias", True),
rotary_kwargs=self.config.rotary_kwargs,
prefix=f"{prefix}.encoder")
def config_verify(self, vllm_config):
raise NotImplementedError
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embeddings(input_ids=input_ids,
token_type_ids=token_type_ids)
return self.encoder(positions, hidden_states)
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
weights = self.hf_to_vllm_mapper.apply(weights)
if self.config.hidden_act in ["silu", "gelu_and_mul"]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
else:
stacked_params_mapping = []
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
if "pooler" in name:
continue
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class NomicBertModel(BertWithRope):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"attn.Wqkv": "attn.qkv_proj",
"norm1": "attn_ln",
"mlp.fc1.": "mlp.up_proj.",
"mlp.fc11": "mlp.up_proj",
"mlp.fc12": "mlp.gate_proj",
"mlp.fc2": "mlp.down_proj",
"norm2": "mlp_ln",
})
def config_verify(self, vllm_config):
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "NomicBertConfig"
assert config.activation_function in ["swiglu", "gelu"]
if config.activation_function == "swiglu":
config.hidden_act = "silu"
else:
config.hidden_act = config.activation_function
assert (config.mlp_fc1_bias == config.mlp_fc2_bias ==
config.qkv_proj_bias)
config.bias = config.qkv_proj_bias
assert config.rotary_emb_scale_base is None
assert not config.rotary_emb_interleaved
config.layer_norm_eps = config.layer_norm_epsilon
config.intermediate_size = config.n_inner
config.hidden_size = config.n_embd
config.num_hidden_layers = config.n_layer
head_dim = config.hidden_size // config.num_attention_heads
rotary_emb_dim = head_dim * config.rotary_emb_fraction
config.rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": rotary_emb_dim,
"max_position": config.max_trained_positions,
"base": getattr(config, "rope_theta", config.rotary_emb_base),
"rope_scaling": getattr(config, "rope_scaling", None)
}
# we ignore config.rotary_scaling_factor so that for datasets shorter
# than max_trained_positions 2048, the results are consistent
# with SentenceTransformer.
# The context extension uses vllm style rope_theta and rope_scaling.
# See #17785
return config
class GteModel(BertWithRope):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"layer": 'layers',
"attention.qkv_proj": "attn.qkv_proj",
"attention.o_proj": "attn.out_proj",
})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
# GteModel only gate_up_proj does not have bias.
# Hack method learned from vllm/model_executor/models/glm.py
for layer in self.encoder.layers:
layer.mlp.gate_up_proj.bias = None
layer.mlp.gate_up_proj.skip_bias_add = True
def config_verify(self, vllm_config):
config = vllm_config.model_config.hf_config
assert config.__class__.__name__ == "GteConfig"
assert config.position_embedding_type == "rope"
assert config.hidden_act == "gelu"
config.position_embedding_type = "rotary"
config.hidden_act = "gelu_and_mul"
head_dim = config.hidden_size // config.num_attention_heads
config.rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_position_embeddings,
"base": config.rope_theta,
"rope_scaling": getattr(config, "rope_scaling", None)
}
return config
def split_up_gate_proj(self, weights: Iterable[Tuple[str, torch.Tensor]]):
n = "mlp.up_gate_proj"
for name, weight in weights:
if n in name:
up, gate = weight.chunk(2, dim=0)
yield name.replace(n, "mlp.up_proj"), up
yield name.replace(n, "mlp.gate_proj"), gate
else:
yield name, weight
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
weights = self.split_up_gate_proj(weights)
return super().load_weights(weights)
class JinaRobertaModel(BertWithRope):
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"mixer.Wqkv": "attn.qkv_proj",
"mixer.out_proj": "attn.out_proj",
"norm1": "attn_ln",
"mlp.fc1.": "mlp.up_proj.",
"mlp.fc2": "mlp.down_proj",
"norm2": "mlp_ln",
})
def config_verify(self, vllm_config):
config = vllm_config.model_config.hf_config
head_dim = config.hidden_size // config.num_attention_heads
config.rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_position_embeddings,
"base": getattr(config, "rope_theta", config.rotary_emb_base),
"rope_scaling": getattr(config, "rope_scaling", None)
}
return config
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return super().forward(input_ids=input_ids,
positions=position_ids,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
token_type_ids=token_type_ids)
@torch.inference_mode()
def jina_merge_lora_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]):
# use for jina-embeddings-v3
# Merge Lora weights into a single weight tensor.
# This is a temporary solution until we have a better way to handle
scaling = self.config.lora_alpha / self.config.lora_rank
weights = {name: weight for name, weight in weights}
o = ".original"
a = ".0.lora_A"
b = ".0.lora_B"
# text-matching
i = -1
for name in list(weights.keys()):
if o in name:
dtype = weights[name].dtype
shape = weights[name].shape
weight_name = name[:-len(o)]
if "embeddings" in weight_name:
B = weights[weight_name + a][i].cuda().float()
A = weights[weight_name + b][i].cuda().float()
else:
B = weights[weight_name + b][i].cuda().float()
A = weights[weight_name + a][i].cuda().float()
weight = (weights[weight_name + o].cuda() +
torch.matmul(B, A).view(shape) * scaling)
weight = weight.cpu().to(dtype)
weights[weight_name.replace(".parametrizations", "")] = weight
del weights[weight_name + o], weights[weight_name +
a], weights[weight_name +
b]
return [(name, weight) for name, weight in weights.items()]
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
weights = self.jina_merge_lora_weights(weights)
return super().load_weights(weights)

View File

@ -126,7 +126,7 @@ _EMBEDDING_MODELS = {
"Gemma2Model": ("gemma2", "Gemma2ForCausalLM"),
"GlmForCausalLM": ("glm", "GlmForCausalLM"),
"GritLM": ("gritlm", "GritLM"),
"GteModel": ("bert", "GteEmbeddingModel"),
"GteModel": ("bert_with_rope", "GteModel"),
"InternLM2ForRewardModel": ("internlm2", "InternLM2ForRewardModel"),
"JambaForSequenceClassification": ("jamba", "JambaForSequenceClassification"), # noqa: E501
"LlamaModel": ("llama", "LlamaForCausalLM"),
@ -136,7 +136,7 @@ _EMBEDDING_MODELS = {
if arch == "LlamaForCausalLM"
},
"MistralModel": ("llama", "LlamaForCausalLM"),
"NomicBertModel": ("bert", "NomicBertEmbeddingModel"),
"NomicBertModel": ("bert_with_rope", "NomicBertModel"),
"Phi3ForCausalLM": ("phi3", "Phi3ForCausalLM"),
"Qwen2Model": ("qwen2", "Qwen2EmbeddingModel"),
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
import itertools
from typing import Iterable, Optional, Tuple
from typing import Iterable, Optional, Tuple, Union
import torch
from torch import nn
@ -19,6 +19,7 @@ from vllm.sequence import IntermediateTensors, PoolerOutput
from vllm.transformers_utils.config import (
get_cross_encoder_activation_function)
from .bert_with_rope import BertWithRope, JinaRobertaModel
from .interfaces import SupportsCrossEncoding, SupportsV0Only
@ -125,39 +126,20 @@ class RobertaEmbeddingModel(BertEmbeddingModel):
def _build_model(self,
vllm_config: VllmConfig,
prefix: str = "") -> BertModel:
prefix: str = "") -> Union[BertModel, BertWithRope]:
if (vllm_config.model_config.hf_config.position_embedding_type ==
"rotary"):
config = vllm_config.model_config.hf_config
head_dim = config.hidden_size // config.num_attention_heads
rotary_kwargs = {
"head_size": head_dim,
"rotary_dim": getattr(config, "rotary_emb_dim", head_dim),
"max_position": config.max_position_embeddings,
"base": config.rotary_emb_base,
"rope_scaling": getattr(config, "rope_scaling", None)
}
return BertModel(vllm_config=vllm_config,
rotary_kwargs=rotary_kwargs,
prefix=prefix)
return JinaRobertaModel(vllm_config=vllm_config, prefix=prefix)
else:
return BertModel(vllm_config=vllm_config,
prefix=prefix,
embedding_class=RobertaEmbedding)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
if getattr(self.config, "lora_rank", 0) > 0:
scaling = self.config.lora_alpha / self.config.lora_rank
weights = jina_merge_lora_weights(weights, scaling)
weights = self.hf_to_vllm_mapper.apply(weights)
# Separate weights in "roberta"-prefixed and all else (not in memory).
# For use with models like FacebookAI/roberta-base.
bert_weights, task_weights = roberta_task_weights_filter(weights)
bert_weights = jina_to_vllm_mapper.apply(bert_weights)
loaded = self.model.load_weights(bert_weights)
if not len(loaded):
# Fix for models like `sentence-transformers/stsb-roberta-base-v2`
@ -178,6 +160,18 @@ class RobertaForSequenceClassification(nn.Module, SupportsCrossEncoding,
_pooler: An instance of Pooler used for pooling operations.
"""
jina_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
'emb_ln': "embeddings.LayerNorm",
'layers': "layer",
'mixer.Wqkv': "attention.self.qkv_proj",
'mixer.out_proj': "attention.output.dense",
'norm1': "attention.output.LayerNorm",
'mlp.fc1': "intermediate.dense",
'mlp.fc2': "output.dense",
'norm2': "output.LayerNorm",
})
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
@ -195,7 +189,7 @@ class RobertaForSequenceClassification(nn.Module, SupportsCrossEncoding,
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
bert_weights, task_weights = roberta_task_weights_filter(weights)
bert_weights = jina_to_vllm_mapper.apply(bert_weights)
bert_weights = self.jina_to_vllm_mapper.apply(bert_weights)
self.roberta.load_weights(bert_weights)
@ -276,57 +270,3 @@ def roberta_task_weights_filter(
return encoder_decoder_weights(), ((n, w) for n, w in all_weights2
if not n.startswith("roberta."))
jina_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
'emb_ln': "embeddings.LayerNorm",
'layers': "layer",
'mixer.Wqkv': "attention.self.qkv_proj",
'mixer.out_proj': "attention.output.dense",
'norm1': "attention.output.LayerNorm",
'mlp.fc1': "intermediate.dense",
'mlp.fc2': "output.dense",
'norm2': "output.LayerNorm",
})
@torch.inference_mode()
def jina_merge_lora_weights(weights: Iterable[Tuple[str, torch.Tensor]],
scaling: float = 1.0):
# use for jina-embeddings-v3
# Merge Lora weights into a single weight tensor.
# This is a temporary solution until we have a better way to handle
weights = {name: weight for name, weight in weights}
o = ".original"
a = ".0.lora_A"
b = ".0.lora_B"
# text-matching
i = -1
for name in list(weights.keys()):
if o in name:
dtype = weights[name].dtype
shape = weights[name].shape
weight_name = name[:-len(o)]
if "embeddings" in weight_name:
B = weights[weight_name + a][i].cuda().float()
A = weights[weight_name + b][i].cuda().float()
else:
B = weights[weight_name + b][i].cuda().float()
A = weights[weight_name + a][i].cuda().float()
weight = (weights[weight_name + o].cuda() +
torch.matmul(B, A).view(shape) * scaling)
weight = weight.cpu().to(dtype)
weights[weight_name.replace(".parametrizations", "")] = weight
del weights[weight_name + o], weights[weight_name +
a], weights[weight_name + b]
return [(name, weight) for name, weight in weights.items()]