Normalize head weights for Baichuan 2 (#1876)

This commit is contained in:
Woosuk Kwon 2023-11-30 20:03:58 -08:00 committed by GitHub
parent d06980dfa7
commit e5452ddfd6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 13 additions and 2 deletions

View File

@ -47,7 +47,7 @@ vLLM is flexible and easy to use with:
vLLM seamlessly supports many Hugging Face models, including the following architectures:
- Aquila & Aquila2 (`BAAI/AquilaChat2-7B`, `BAAI/AquilaChat2-34B`, `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
- Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Chat`, etc.)
- Baichuan & Baichuan2 (`baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc.)
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)

View File

@ -19,7 +19,7 @@ Alongside each architecture, we include some popular models that use it.
- :code:`BAAI/Aquila-7B`, :code:`BAAI/AquilaChat-7B`, etc.
* - :code:`BaiChuanForCausalLM`
- Baichuan
- :code:`baichuan-inc/Baichuan-7B`, :code:`baichuan-inc/Baichuan-13B-Chat`, etc.
- :code:`baichuan-inc/Baichuan2-13B-Chat`, :code:`baichuan-inc/Baichuan-7B`, etc.
* - :code:`ChatGLMModel`
- ChatGLM
- :code:`THUDM/chatglm2-6b`, :code:`THUDM/chatglm3-6b`, etc.

View File

@ -341,6 +341,17 @@ class BaiChuanBaseForCausalLM(nn.Module):
model_name_or_path, cache_dir, load_format, revision):
if "rotary_emb.inv_freq" in name:
continue
if name == "lm_head.weight":
# Unlike Baichuan, Baichuan2 normalizes the head weights. Refer to:
# https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/blob/84603cde5ebffb6084e476cfaeceaf0b8b91fe54/modeling_baichuan.py#L508
# Distinguish between Baichuan and Baichuan2 by checking the
# vocab size. This is suggested by
# https://github.com/vllm-project/vllm/pull/1022#discussion_r1325652704
is_baichuan2 = self.config.vocab_size == 125696
if is_baichuan2:
loaded_weight = torch.nn.functional.normalize(
loaded_weight)
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue