multi-node offline DP+EP example (#15484)

Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
youkaichao 2025-03-26 23:54:24 +08:00 committed by GitHub
parent 1711b929b6
commit e64afa455c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,26 +1,49 @@
# SPDX-License-Identifier: Apache-2.0
# usage:
# VLLM_USE_V1=1 python examples/offline_inference/data_parallel.py
# we need to have a launcher to create multiple data parallel
# ranks. And each rank will create a vLLM instance to process its own prompts.
"""
Usage:
Single node:
python examples/offline_inference/data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2
Multi-node:
Node 0 (assume the node has ip of 10.99.48.128):
python examples/offline_inference/data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2 \
--node-size=2 \
--node-rank=0 \
--master-addr=10.99.48.128 \
--master-port=13345
Node 1:
python examples/offline_inference/data_parallel.py \
--model="ibm-research/PowerMoE-3b" \
--dp-size=2 \
--tp-size=2 \
--node-size=2 \
--node-rank=1 \
--master-addr=10.99.48.128 \
--master-port=13345
"""
import os
from vllm import LLM, SamplingParams
from vllm.utils import get_open_port
GPUs_per_dp_rank = 2
DP_size = 2
def main(dp_size, dp_rank, dp_master_ip, dp_master_port, GPUs_per_dp_rank):
os.environ["VLLM_DP_RANK"] = str(dp_rank)
def main(model, dp_size, local_dp_rank, global_dp_rank, dp_master_ip,
dp_master_port, GPUs_per_dp_rank):
os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
os.environ["VLLM_DP_SIZE"] = str(dp_size)
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
# set devices for each dp_rank
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
str(i) for i in range(dp_rank * GPUs_per_dp_rank, (dp_rank + 1) *
GPUs_per_dp_rank))
str(i)
for i in range(local_dp_rank * GPUs_per_dp_rank, (local_dp_rank + 1) *
GPUs_per_dp_rank))
# Sample prompts.
prompts = [
@ -28,20 +51,20 @@ def main(dp_size, dp_rank, dp_master_ip, dp_master_port, GPUs_per_dp_rank):
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
] * 100
# with DP, each rank should process different prompts.
# usually all the DP ranks process a full dataset,
# and each rank processes a different part of the dataset.
promts_per_rank = len(prompts) // dp_size
start = dp_rank * promts_per_rank
start = global_dp_rank * promts_per_rank
end = start + promts_per_rank
prompts = prompts[start:end]
if len(prompts) == 0:
# if any rank has no prompts to process,
# we need to set a placeholder prompt
prompts = ["Placeholder"]
print(f"DP rank {dp_rank} needs to process {len(prompts)} prompts")
print(f"DP rank {global_dp_rank} needs to process {len(prompts)} prompts")
# Create a sampling params object.
# since we are doing data parallel, every rank can have different
@ -49,31 +72,82 @@ def main(dp_size, dp_rank, dp_master_ip, dp_master_port, GPUs_per_dp_rank):
# ranks for demonstration.
sampling_params = SamplingParams(temperature=0.8,
top_p=0.95,
max_tokens=16 * (dp_rank + 1))
max_tokens=[16, 20][global_dp_rank % 2])
# Create an LLM.
llm = LLM(model="ibm-research/PowerMoE-3b",
llm = LLM(model=model,
tensor_parallel_size=GPUs_per_dp_rank,
enforce_eager=True,
enable_expert_parallel=True)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
for i, output in enumerate(outputs):
if i >= 5:
# print only 5 outputs
break
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"DP rank {dp_rank}, Prompt: {prompt!r}, "
print(f"DP rank {global_dp_rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Data Parallel Inference")
parser.add_argument("--model",
type=str,
default="ibm-research/PowerMoE-3b",
help="Model name or path")
parser.add_argument("--dp-size",
type=int,
default=2,
help="Data parallel size")
parser.add_argument("--tp-size",
type=int,
default=2,
help="Tensor parallel size")
parser.add_argument("--node-size",
type=int,
default=1,
help="Total number of nodes")
parser.add_argument("--node-rank",
type=int,
default=0,
help="Rank of the current node")
parser.add_argument("--master-addr",
type=str,
default="",
help="Master node IP address")
parser.add_argument("--master-port",
type=int,
default=0,
help="Master node port")
args = parser.parse_args()
dp_size = args.dp_size
tp_size = args.tp_size
node_size = args.node_size
node_rank = args.node_rank
if node_size == 1:
dp_master_ip = "127.0.0.1"
dp_master_port = get_open_port()
else:
dp_master_ip = args.master_addr
dp_master_port = args.master_port
assert dp_size % node_size == 0, "dp_size should be divisible by node_size"
dp_per_node = dp_size // node_size
from multiprocessing import Process
dp_master_ip = "127.0.0.1"
dp_master_port = get_open_port()
procs = []
for i in range(DP_size):
for local_dp_rank, global_dp_rank in enumerate(
range(node_rank * dp_per_node, (node_rank + 1) * dp_per_node)):
proc = Process(target=main,
args=(DP_size, i, dp_master_ip, dp_master_port,
GPUs_per_dp_rank))
args=(args.model, dp_size, local_dp_rank,
global_dp_rank, dp_master_ip, dp_master_port,
tp_size))
proc.start()
procs.append(proc)
exit_code = 0