mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 09:06:03 +08:00
[core][distributed] add stateless process group (#10216)
Signed-off-by: youkaichao <youkaichao@gmail.com>
This commit is contained in:
parent
36fc439de0
commit
e6de9784d2
@ -1,10 +1,10 @@
|
||||
import pytest
|
||||
import ray
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
|
||||
import vllm.envs as envs
|
||||
from vllm.distributed.utils import stateless_init_process_group
|
||||
from vllm.distributed.device_communicators.pynccl import PyNcclCommunicator
|
||||
from vllm.distributed.utils import StatelessProcessGroup
|
||||
from vllm.utils import (cuda_device_count_stateless,
|
||||
update_environment_variables)
|
||||
|
||||
@ -41,42 +41,45 @@ def test_cuda_device_count_stateless():
|
||||
|
||||
|
||||
def cpu_worker(rank, WORLD_SIZE):
|
||||
pg1 = stateless_init_process_group(init_method="tcp://127.0.0.1:29500",
|
||||
pg1 = StatelessProcessGroup.create(init_method="tcp://127.0.0.1:29500",
|
||||
rank=rank,
|
||||
world_size=WORLD_SIZE,
|
||||
backend="gloo")
|
||||
world_size=WORLD_SIZE)
|
||||
if rank <= 2:
|
||||
pg2 = stateless_init_process_group(init_method="tcp://127.0.0.1:29501",
|
||||
pg2 = StatelessProcessGroup.create(init_method="tcp://127.0.0.1:29501",
|
||||
rank=rank,
|
||||
world_size=3,
|
||||
backend="gloo")
|
||||
world_size=3)
|
||||
data = torch.tensor([rank])
|
||||
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg1)
|
||||
data = pg1.broadcast_obj(data, src=2)
|
||||
assert data.item() == 2
|
||||
if rank <= 2:
|
||||
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg2)
|
||||
item = data[0].item()
|
||||
print(f"rank: {rank}, item: {item}")
|
||||
if rank == 3:
|
||||
assert item == 6
|
||||
else:
|
||||
assert item == 18
|
||||
data = torch.tensor([rank + 1])
|
||||
data = pg2.broadcast_obj(data, src=2)
|
||||
assert data.item() == 3
|
||||
pg2.barrier()
|
||||
pg1.barrier()
|
||||
|
||||
|
||||
def gpu_worker(rank, WORLD_SIZE):
|
||||
pg1 = stateless_init_process_group(init_method="tcp://127.0.0.1:29502",
|
||||
rank=rank,
|
||||
world_size=WORLD_SIZE,
|
||||
backend="nccl")
|
||||
if rank <= 2:
|
||||
pg2 = stateless_init_process_group(init_method="tcp://127.0.0.1:29503",
|
||||
rank=rank,
|
||||
world_size=3,
|
||||
backend="nccl")
|
||||
torch.cuda.set_device(rank)
|
||||
data = torch.tensor([rank]).cuda()
|
||||
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg1)
|
||||
pg1 = StatelessProcessGroup.create(init_method="tcp://127.0.0.1:29502",
|
||||
rank=rank,
|
||||
world_size=WORLD_SIZE)
|
||||
pynccl1 = PyNcclCommunicator(pg1, device=rank)
|
||||
pynccl1.disabled = False
|
||||
if rank <= 2:
|
||||
dist.all_reduce(data, op=dist.ReduceOp.SUM, group=pg2)
|
||||
pg2 = StatelessProcessGroup.create(init_method="tcp://127.0.0.1:29503",
|
||||
rank=rank,
|
||||
world_size=3)
|
||||
pynccl2 = PyNcclCommunicator(pg2, device=rank)
|
||||
pynccl2.disabled = False
|
||||
data = torch.tensor([rank]).cuda()
|
||||
pynccl1.all_reduce(data)
|
||||
pg1.barrier()
|
||||
torch.cuda.synchronize()
|
||||
if rank <= 2:
|
||||
pynccl2.all_reduce(data)
|
||||
pg2.barrier()
|
||||
torch.cuda.synchronize()
|
||||
item = data[0].item()
|
||||
print(f"rank: {rank}, item: {item}")
|
||||
if rank == 3:
|
||||
@ -85,9 +88,31 @@ def gpu_worker(rank, WORLD_SIZE):
|
||||
assert item == 18
|
||||
|
||||
|
||||
def broadcast_worker(rank, WORLD_SIZE):
|
||||
pg1 = StatelessProcessGroup.create(init_method="tcp://127.0.0.1:29504",
|
||||
rank=rank,
|
||||
world_size=WORLD_SIZE)
|
||||
if rank == 2:
|
||||
pg1.broadcast_obj("secret", src=2)
|
||||
else:
|
||||
obj = pg1.broadcast_obj(None, src=2)
|
||||
assert obj == "secret"
|
||||
pg1.barrier()
|
||||
|
||||
|
||||
def allgather_worker(rank, WORLD_SIZE):
|
||||
pg1 = StatelessProcessGroup.create(init_method="tcp://127.0.0.1:29505",
|
||||
rank=rank,
|
||||
world_size=WORLD_SIZE)
|
||||
data = pg1.all_gather_obj(rank)
|
||||
assert data == list(range(WORLD_SIZE))
|
||||
pg1.barrier()
|
||||
|
||||
|
||||
@multi_gpu_test(num_gpus=4)
|
||||
@pytest.mark.parametrize("worker", [cpu_worker, gpu_worker])
|
||||
def test_stateless_init_process_group(worker):
|
||||
@pytest.mark.parametrize(
|
||||
"worker", [cpu_worker, gpu_worker, broadcast_worker, allgather_worker])
|
||||
def test_stateless_process_group(worker):
|
||||
WORLD_SIZE = 4
|
||||
from multiprocessing import get_context
|
||||
ctx = get_context("fork")
|
||||
|
||||
@ -9,6 +9,7 @@ from torch.distributed import ProcessGroup, ReduceOp
|
||||
from vllm.distributed.device_communicators.pynccl_wrapper import (
|
||||
NCCLLibrary, buffer_type, cudaStream_t, ncclComm_t, ncclDataTypeEnum,
|
||||
ncclRedOpTypeEnum, ncclUniqueId)
|
||||
from vllm.distributed.utils import StatelessProcessGroup
|
||||
from vllm.logger import init_logger
|
||||
|
||||
logger = init_logger(__name__)
|
||||
@ -18,7 +19,7 @@ class PyNcclCommunicator:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
group: ProcessGroup,
|
||||
group: Union[ProcessGroup, StatelessProcessGroup],
|
||||
device: Union[int, str, torch.device],
|
||||
library_path: Optional[str] = None,
|
||||
):
|
||||
@ -33,13 +34,18 @@ class PyNcclCommunicator:
|
||||
It is the caller's responsibility to make sure each communicator
|
||||
is bind to a unique device.
|
||||
"""
|
||||
assert dist.is_initialized()
|
||||
assert dist.get_backend(group) != dist.Backend.NCCL, (
|
||||
"PyNcclCommunicator should be attached to a non-NCCL group.")
|
||||
if not isinstance(group, StatelessProcessGroup):
|
||||
assert dist.is_initialized()
|
||||
assert dist.get_backend(group) != dist.Backend.NCCL, (
|
||||
"PyNcclCommunicator should be attached to a non-NCCL group.")
|
||||
# note: this rank is the rank in the group
|
||||
self.rank = dist.get_rank(group)
|
||||
self.world_size = dist.get_world_size(group)
|
||||
else:
|
||||
self.rank = group.rank
|
||||
self.world_size = group.world_size
|
||||
|
||||
self.group = group
|
||||
# note: this rank is the rank in the group
|
||||
self.rank = dist.get_rank(group)
|
||||
self.world_size = dist.get_world_size(group)
|
||||
|
||||
# if world_size == 1, no need to create communicator
|
||||
if self.world_size == 1:
|
||||
@ -68,13 +74,17 @@ class PyNcclCommunicator:
|
||||
else:
|
||||
# construct an empty unique id
|
||||
self.unique_id = ncclUniqueId()
|
||||
tensor = torch.ByteTensor(list(self.unique_id.internal))
|
||||
ranks = dist.get_process_group_ranks(group)
|
||||
# arg `src` in `broadcast` is the global rank
|
||||
dist.broadcast(tensor, src=ranks[0], group=group)
|
||||
byte_list = tensor.tolist()
|
||||
for i, byte in enumerate(byte_list):
|
||||
self.unique_id.internal[i] = byte
|
||||
|
||||
if not isinstance(group, StatelessProcessGroup):
|
||||
tensor = torch.ByteTensor(list(self.unique_id.internal))
|
||||
ranks = dist.get_process_group_ranks(group)
|
||||
# arg `src` in `broadcast` is the global rank
|
||||
dist.broadcast(tensor, src=ranks[0], group=group)
|
||||
byte_list = tensor.tolist()
|
||||
for i, byte in enumerate(byte_list):
|
||||
self.unique_id.internal[i] = byte
|
||||
else:
|
||||
self.unique_id = group.broadcast_obj(self.unique_id, src=0)
|
||||
if isinstance(device, int):
|
||||
device = torch.device(f"cuda:{device}")
|
||||
elif isinstance(device, str):
|
||||
|
||||
@ -2,13 +2,13 @@
|
||||
# Adapted from
|
||||
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/utils.py
|
||||
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||||
from typing import Sequence, Tuple
|
||||
import dataclasses
|
||||
import pickle
|
||||
import time
|
||||
from collections import deque
|
||||
from typing import Any, Deque, Dict, Optional, Sequence, Tuple
|
||||
|
||||
import torch
|
||||
from torch.distributed import ProcessGroup
|
||||
from torch.distributed.distributed_c10d import (Backend, PrefixStore,
|
||||
_get_default_timeout,
|
||||
is_nccl_available)
|
||||
from torch.distributed.rendezvous import rendezvous
|
||||
|
||||
import vllm.envs as envs
|
||||
@ -91,69 +91,139 @@ def get_pp_indices(num_hidden_layers: int, pp_rank: int,
|
||||
return (start_layer, end_layer)
|
||||
|
||||
|
||||
def stateless_init_process_group(init_method: str, rank: int, world_size: int,
|
||||
backend: str) -> ProcessGroup:
|
||||
"""A replacement for `torch.distributed.init_process_group` that does not
|
||||
pollute the global state.
|
||||
@dataclasses.dataclass
|
||||
class StatelessProcessGroup:
|
||||
"""A dataclass to hold a metadata store, and the rank, world_size of the
|
||||
group. Only use it to communicate metadata between processes.
|
||||
For data-plane communication, create NCCL-related objects.
|
||||
"""
|
||||
prefix: str
|
||||
rank: int
|
||||
world_size: int
|
||||
store: torch._C._distributed_c10d.Store
|
||||
data_expiration_seconds: int = 3600 # 1 hour
|
||||
|
||||
If we have process A and process B called `torch.distributed.init_process_group`
|
||||
to form a group, and then we want to form another group with process A, B, C,
|
||||
D, it is not possible in PyTorch, because process A and process B have already
|
||||
formed a group, and process C and process D cannot join that group. This
|
||||
function is a workaround for this issue.
|
||||
# dst rank -> counter
|
||||
send_dst_counter: Dict[int, int] = dataclasses.field(default_factory=dict)
|
||||
# src rank -> counter
|
||||
recv_src_counter: Dict[int, int] = dataclasses.field(default_factory=dict)
|
||||
broadcast_send_counter: int = 0
|
||||
broadcast_recv_src_counter: Dict[int, int] = dataclasses.field(
|
||||
default_factory=dict)
|
||||
|
||||
`torch.distributed.init_process_group` is a global call, while this function
|
||||
is a stateless call. It will return a `ProcessGroup` object that can be used
|
||||
for collective communication. With this function, process A and process B
|
||||
can call `stateless_init_process_group` to form a group, and then process A, B,
|
||||
C, and D can call `stateless_init_process_group` to form another group.
|
||||
""" # noqa
|
||||
# A deque to store the data entries, with key and timestamp.
|
||||
entries: Deque[Tuple[str,
|
||||
float]] = dataclasses.field(default_factory=deque)
|
||||
|
||||
backend = Backend(backend) # it is basically string
|
||||
timeout = _get_default_timeout(backend)
|
||||
def __post_init__(self):
|
||||
assert self.rank < self.world_size
|
||||
self.send_dst_counter = {i: 0 for i in range(self.world_size)}
|
||||
self.recv_src_counter = {i: 0 for i in range(self.world_size)}
|
||||
self.broadcast_recv_src_counter = {
|
||||
i: 0
|
||||
for i in range(self.world_size)
|
||||
}
|
||||
|
||||
store, rank, world_size = next(
|
||||
rendezvous(init_method, rank, world_size, timeout=timeout))
|
||||
store.set_timeout(timeout)
|
||||
def send_obj(self, obj: Any, dst: int):
|
||||
"""Send an object to a destination rank."""
|
||||
self.expire_data()
|
||||
key = f"{self.prefix}/send_to/{dst}/{self.send_dst_counter[dst]}"
|
||||
self.store.set(key, pickle.dumps(obj))
|
||||
self.send_dst_counter[dst] += 1
|
||||
self.entries.append((key, time.time()))
|
||||
|
||||
group_rank = rank
|
||||
group_size = world_size
|
||||
def expire_data(self):
|
||||
"""Expire data that is older than `data_expiration_seconds` seconds."""
|
||||
while self.entries:
|
||||
# check the oldest entry
|
||||
key, timestamp = self.entries[0]
|
||||
if time.time() - timestamp > self.data_expiration_seconds:
|
||||
self.store.delete_key(key)
|
||||
self.entries.popleft()
|
||||
else:
|
||||
break
|
||||
|
||||
# Use a PrefixStore to avoid accidental overrides of keys used by
|
||||
# different systems (e.g. RPC) in case the store is multi-tenant.
|
||||
prefix_store = PrefixStore(init_method, store)
|
||||
def recv_obj(self, src: int) -> Any:
|
||||
"""Receive an object from a source rank."""
|
||||
obj = pickle.loads(
|
||||
self.store.get(
|
||||
f"{self.prefix}/send_to/{self.rank}/{self.recv_src_counter[src]}"
|
||||
))
|
||||
self.recv_src_counter[src] += 1
|
||||
return obj
|
||||
|
||||
pg_options = ProcessGroup.Options(backend=backend, timeout=timeout)
|
||||
def broadcast_obj(self, obj: Optional[Any], src: int) -> Any:
|
||||
"""Broadcast an object from a source rank to all other ranks.
|
||||
It does not clean up after all ranks have received the object.
|
||||
Use it for limited times, e.g., for initialization.
|
||||
"""
|
||||
if self.rank == src:
|
||||
self.expire_data()
|
||||
key = (f"{self.prefix}/broadcast_from/{src}/"
|
||||
f"{self.broadcast_send_counter}")
|
||||
self.store.set(key, pickle.dumps(obj))
|
||||
self.broadcast_send_counter += 1
|
||||
self.entries.append((key, time.time()))
|
||||
return obj
|
||||
else:
|
||||
key = (f"{self.prefix}/broadcast_from/{src}/"
|
||||
f"{self.broadcast_recv_src_counter[src]}")
|
||||
recv_obj = pickle.loads(self.store.get(key))
|
||||
self.broadcast_recv_src_counter[src] += 1
|
||||
return recv_obj
|
||||
|
||||
pg: ProcessGroup = ProcessGroup(
|
||||
prefix_store,
|
||||
group_rank,
|
||||
group_size,
|
||||
pg_options,
|
||||
)
|
||||
def all_gather_obj(self, obj: Any) -> list[Any]:
|
||||
"""All gather an object from all ranks."""
|
||||
gathered_objs = []
|
||||
for i in range(self.world_size):
|
||||
if i == self.rank:
|
||||
gathered_objs.append(obj)
|
||||
self.broadcast_obj(obj, src=self.rank)
|
||||
else:
|
||||
recv_obj = self.broadcast_obj(None, src=i)
|
||||
gathered_objs.append(recv_obj)
|
||||
return gathered_objs
|
||||
|
||||
if backend == "gloo":
|
||||
from torch.distributed.distributed_c10d import ProcessGroupGloo
|
||||
backend_class = ProcessGroupGloo(prefix_store,
|
||||
group_rank,
|
||||
group_size,
|
||||
timeout=timeout)
|
||||
backend_type = ProcessGroup.BackendType.GLOO
|
||||
device = torch.device("cpu")
|
||||
elif backend == "nccl":
|
||||
assert is_nccl_available()
|
||||
from torch.distributed.distributed_c10d import ProcessGroupNCCL
|
||||
def barrier(self):
|
||||
"""A barrier to synchronize all ranks."""
|
||||
for i in range(self.world_size):
|
||||
if i == self.rank:
|
||||
self.broadcast_obj(None, src=self.rank)
|
||||
else:
|
||||
self.broadcast_obj(None, src=i)
|
||||
|
||||
backend_options = ProcessGroupNCCL.Options()
|
||||
backend_options._timeout = timeout
|
||||
@staticmethod
|
||||
def create(
|
||||
init_method: str,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
data_expiration_seconds: int = 3600,
|
||||
) -> "StatelessProcessGroup":
|
||||
"""A replacement for `torch.distributed.init_process_group` that does not
|
||||
pollute the global state.
|
||||
|
||||
backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
|
||||
backend_options)
|
||||
backend_type = ProcessGroup.BackendType.NCCL
|
||||
device = torch.device("cuda")
|
||||
If we have process A and process B called `torch.distributed.init_process_group`
|
||||
to form a group, and then we want to form another group with process A, B, C,
|
||||
D, it is not possible in PyTorch, because process A and process B have already
|
||||
formed a group, and process C and process D cannot join that group. This
|
||||
function is a workaround for this issue.
|
||||
|
||||
backend_class._set_sequence_number_for_group()
|
||||
`torch.distributed.init_process_group` is a global call, while this function
|
||||
is a stateless call. It will return a `StatelessProcessGroup` object that can be
|
||||
used for exchanging metadata. With this function, process A and process B
|
||||
can call `StatelessProcessGroup.create` to form a group, and then process A, B,
|
||||
C, and D can call `StatelessProcessGroup.create` to form another group.
|
||||
""" # noqa
|
||||
from torch._C._distributed_c10d import _DEFAULT_PG_TIMEOUT
|
||||
timeout = _DEFAULT_PG_TIMEOUT
|
||||
|
||||
pg._register_backend(device, backend_type, backend_class)
|
||||
store, rank, world_size = next(
|
||||
rendezvous(init_method, rank, world_size, timeout=timeout))
|
||||
store.set_timeout(timeout)
|
||||
|
||||
return pg
|
||||
return StatelessProcessGroup(
|
||||
prefix=init_method,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
store=store,
|
||||
data_expiration_seconds=data_expiration_seconds)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user