mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-27 17:01:52 +08:00
Support Yi model (#1567)
This commit is contained in:
parent
8516999495
commit
e7f579eb97
@ -33,6 +33,7 @@ _MODEL_REGISTRY = {
|
||||
"OPTForCausalLM": OPTForCausalLM,
|
||||
"QWenLMHeadModel": QWenLMHeadModel,
|
||||
"RWForCausalLM": FalconForCausalLM,
|
||||
"YiForCausalLM": YiForCausalLM,
|
||||
}
|
||||
|
||||
# FIXME(woosuk): Remove this once all models support quantization.
|
||||
|
||||
@ -13,6 +13,7 @@ from vllm.model_executor.models.mistral import MistralForCausalLM
|
||||
from vllm.model_executor.models.mpt import MptForCausalLM
|
||||
from vllm.model_executor.models.opt import OPTForCausalLM
|
||||
from vllm.model_executor.models.qwen import QWenLMHeadModel
|
||||
from vllm.model_executor.models.yi import YiForCausalLM
|
||||
|
||||
__all__ = [
|
||||
"AquilaForCausalLM",
|
||||
@ -30,4 +31,5 @@ __all__ = [
|
||||
"OPTForCausalLM",
|
||||
"QWenLMHeadModel",
|
||||
"MistralForCausalLM",
|
||||
"YiForCausalLM",
|
||||
]
|
||||
|
||||
426
vllm/model_executor/models/yi.py
Normal file
426
vllm/model_executor/models/yi.py
Normal file
@ -0,0 +1,426 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Yi model (https://01.ai) compatible with HuggingFace weights.
|
||||
|
||||
The input of the model is flattened to a 1D tensor of tokens. The model uses
|
||||
InputMetadata to extract the original 2D shape of the input.
|
||||
"""
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from vllm.transformers_utils.configs.yi import YiConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.quantized_linear import ParallelLinear
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.parallel_utils.layers import VocabParallelEmbedding
|
||||
from vllm.model_executor.quantization_utils import QuantizationConfig
|
||||
from vllm.model_executor.weight_utils import (
|
||||
convert_pyslice_to_tensor, hf_model_weights_iterator,
|
||||
load_tensor_parallel_weights, load_padded_tensor_parallel_vocab)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class YiMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = ParallelLinear.column(hidden_size,
|
||||
2 * intermediate_size,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
quant_config=quant_config)
|
||||
self.down_proj = ParallelLinear.row(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
input_is_parallel=True,
|
||||
quant_config=quant_config)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class YiAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
num_kv_heads_replicas = max(1, tp_size // self.total_num_kv_heads)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = ParallelLinear.column(
|
||||
hidden_size,
|
||||
(self.total_num_heads +
|
||||
2 * self.total_num_kv_heads * num_kv_heads_replicas) *
|
||||
self.head_dim,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.o_proj = ParallelLinear.row(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
input_is_parallel=True,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.attn = PagedAttentionWithRoPE(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
base=self.rope_theta,
|
||||
max_position=self.max_position_embeddings,
|
||||
rotary_dim=self.head_dim,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
rope_scaling=rope_scaling)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
|
||||
input_metadata, cache_event)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class YiDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: YiConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Requires transformers > 4.32.0
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = YiAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.mlp = YiMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
self.ln1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.ln2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
cache_event: Optional[torch.cuda.Event],
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln1(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
cache_event=cache_event,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln2(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class YiModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: YiConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
YiDecoderLayer(config, quant_config)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
if cache_events is None:
|
||||
cache_event = None
|
||||
else:
|
||||
cache_event = cache_events[i]
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
cache_event,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class YiForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: YiConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.model = YiModel(config, quant_config)
|
||||
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
||||
# NOTE: The LM head is not quantized.
|
||||
self.lm_head = ParallelLinear.column(config.hidden_size,
|
||||
vocab_size,
|
||||
bias=False,
|
||||
gather_output=False,
|
||||
quant_config=None)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
cache_events: Optional[List[torch.cuda.Event]],
|
||||
) -> SamplerOutput:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata, cache_events)
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
input_metadata)
|
||||
return next_tokens
|
||||
|
||||
_column_parallel_layers = []
|
||||
_row_parallel_layers = ["o_proj", "down_proj"]
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
if self.quant_config is None:
|
||||
col_weight_suffixes = ["weight"]
|
||||
row_weight_suffixes = ["weight"]
|
||||
else:
|
||||
col_weight_suffixes = (
|
||||
self.quant_config.get_col_parallel_tensor_names())
|
||||
row_weight_suffixes = (
|
||||
self.quant_config.get_row_parallel_tensor_names())
|
||||
|
||||
column_parallel_weights: List[str] = []
|
||||
for layer in self._column_parallel_layers:
|
||||
for suffix in col_weight_suffixes:
|
||||
column_parallel_weights.append(f"{layer}.{suffix}")
|
||||
row_parallel_weights: List[str] = []
|
||||
for layer in self._row_parallel_layers:
|
||||
for suffix in row_weight_suffixes:
|
||||
row_parallel_weights.append(f"{layer}.{suffix}")
|
||||
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
q_proj_shard_size = (self.config.hidden_size // tp_size)
|
||||
num_kv_heads_replicas = max(1,
|
||||
tp_size // self.config.num_key_value_heads)
|
||||
num_kv_heads_per_gpu = max(1,
|
||||
self.config.num_key_value_heads // tp_size)
|
||||
kv_proj_shard_size = (self.config.hidden_size //
|
||||
self.config.num_attention_heads *
|
||||
num_kv_heads_per_gpu)
|
||||
attention_weight_specs = [
|
||||
# (weight_name, shard_size, offset)
|
||||
("q_proj", q_proj_shard_size, 0),
|
||||
("k_proj", kv_proj_shard_size, q_proj_shard_size),
|
||||
("v_proj", kv_proj_shard_size,
|
||||
q_proj_shard_size + kv_proj_shard_size),
|
||||
]
|
||||
state_dict = self.state_dict()
|
||||
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
|
||||
packed_dim = None
|
||||
is_transposed = False
|
||||
if self.quant_config is not None:
|
||||
packed_dim = self.quant_config.get_packed_dim(name)
|
||||
is_transposed = self.quant_config.is_transposed(name)
|
||||
if is_transposed:
|
||||
loaded_weight = convert_pyslice_to_tensor(loaded_weight)
|
||||
loaded_weight = loaded_weight.T
|
||||
|
||||
is_attention_weight = False
|
||||
for weight_name, shard_size, offset in attention_weight_specs:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
param = state_dict[name.replace(weight_name, "qkv_proj")]
|
||||
if is_transposed:
|
||||
param = param.T
|
||||
|
||||
if packed_dim is not None:
|
||||
shard_dim = 0 if not is_transposed else 1
|
||||
if packed_dim == shard_dim:
|
||||
shard_size //= self.quant_config.pack_factor
|
||||
offset //= self.quant_config.pack_factor
|
||||
|
||||
if weight_name in ["k_proj", "v_proj"]:
|
||||
shard_id = tp_rank // num_kv_heads_replicas
|
||||
else:
|
||||
shard_id = tp_rank
|
||||
loaded_weight = loaded_weight[shard_size *
|
||||
shard_id:shard_size *
|
||||
(shard_id + 1)]
|
||||
param_slice = param.data[offset:offset + shard_size]
|
||||
assert param_slice.shape == loaded_weight.shape
|
||||
|
||||
param_slice.copy_(loaded_weight)
|
||||
is_attention_weight = True
|
||||
break
|
||||
if is_attention_weight:
|
||||
continue
|
||||
|
||||
is_gate_up_weight = False
|
||||
for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
|
||||
if weight_name not in name:
|
||||
continue
|
||||
param = state_dict[name.replace(weight_name, "gate_up_proj")]
|
||||
if is_transposed:
|
||||
param = param.T
|
||||
|
||||
shard_size = param.shape[0] // 2
|
||||
loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
|
||||
(tp_rank + 1)]
|
||||
param_slice = param.data[shard_size * stride_id:shard_size *
|
||||
(stride_id + 1)]
|
||||
assert param_slice.shape == loaded_weight.shape
|
||||
param_slice.copy_(loaded_weight)
|
||||
is_gate_up_weight = True
|
||||
break
|
||||
if is_gate_up_weight:
|
||||
continue
|
||||
|
||||
param = state_dict[name]
|
||||
if is_transposed:
|
||||
param = param.T
|
||||
|
||||
if "embed_tokens" in name or "lm_head" in name:
|
||||
load_padded_tensor_parallel_vocab(param, loaded_weight,
|
||||
tp_rank)
|
||||
continue
|
||||
|
||||
load_tensor_parallel_weights(param, loaded_weight, name,
|
||||
column_parallel_weights,
|
||||
row_parallel_weights, tp_rank)
|
||||
@ -11,6 +11,7 @@ _CONFIG_REGISTRY = {
|
||||
"qwen": QWenConfig,
|
||||
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
|
||||
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
|
||||
"yi": YiConfig,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -5,10 +5,12 @@ from vllm.transformers_utils.configs.qwen import QWenConfig
|
||||
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
|
||||
# `FalconConfig` class from the official HuggingFace transformers library.
|
||||
from vllm.transformers_utils.configs.falcon import RWConfig
|
||||
from vllm.transformers_utils.configs.yi import YiConfig
|
||||
|
||||
__all__ = [
|
||||
"BaiChuanConfig",
|
||||
"AquilaConfig",
|
||||
"QWenConfig",
|
||||
"RWConfig",
|
||||
"YiConfig",
|
||||
]
|
||||
|
||||
64
vllm/transformers_utils/configs/yi.py
Normal file
64
vllm/transformers_utils/configs/yi.py
Normal file
@ -0,0 +1,64 @@
|
||||
""" Yi model configuration"""
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
Yi_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
class YiConfig(PretrainedConfig):
|
||||
r"""
|
||||
Reference:
|
||||
https://huggingface.co/01-ai/Yi-6B/blob/main/configuration_yi.py
|
||||
"""
|
||||
model_type = "Yi"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=64000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=4,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
output_attentions=False,
|
||||
rope_theta=5000000.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.output_attentions = output_attentions
|
||||
self.rope_theta = rope_theta
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
Loading…
x
Reference in New Issue
Block a user