Incrementally decode output tokens (#121)

This commit is contained in:
Woosuk Kwon 2023-05-23 20:46:32 -07:00 committed by GitHub
parent aedba6d5ec
commit e86717833d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 83 additions and 17 deletions

View File

@ -291,7 +291,7 @@ class Scheduler:
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
# Append a new token to the sequence.
output = seq_outputs[seq.seq_id]
seq.append_token(output.output_token, output.logprobs)
seq.append_token_id(output.output_token, output.logprobs)
return self.running.copy()
def free_seq(self, seq: Sequence) -> None:

View File

@ -24,7 +24,7 @@ class SequenceData:
self.output_token_ids: List[int] = []
self.cumulative_logprob = 0.0
def append_token(self, token_id: int, logprob: float) -> None:
def append_token_id(self, token_id: int, logprob: float) -> None:
self.output_token_ids.append(token_id)
self.cumulative_logprob += logprob
@ -64,6 +64,7 @@ class Sequence:
self.data = SequenceData(prompt_token_ids)
self.output_logprobs: List[Dict[int, float]] = []
self.output_tokens: List[str] = []
self.output_text = ""
self.logical_token_blocks: List[LogicalTokenBlock] = []
@ -92,11 +93,15 @@ class Sequence:
last_block.append_tokens(token_ids[:num_empty_slots])
token_ids = token_ids[num_empty_slots:]
def append_token(self, token_id: int, logprobs: Dict[int, float]) -> None:
def append_token_id(
self,
token_id: int,
logprobs: Dict[int, float],
) -> None:
assert token_id in logprobs
self._append_tokens_to_blocks([token_id])
self.output_logprobs.append(logprobs)
self.data.append_token(token_id, logprobs[token_id])
self.data.append_token_id(token_id, logprobs[token_id])
def get_len(self) -> int:
return self.data.get_len()

View File

@ -14,7 +14,8 @@ from cacheflow.outputs import RequestOutput
from cacheflow.sampling_params import SamplingParams
from cacheflow.server.arg_utils import ServerArgs
from cacheflow.server.ray_utils import initialize_cluster
from cacheflow.server.tokenizer_utils import get_tokenizer
from cacheflow.server.tokenizer_utils import (get_tokenizer,
detokenize_incrementally)
from cacheflow.sequence import Sequence, SequenceGroup, SequenceStatus
from cacheflow.utils import Counter
from cacheflow.worker.worker import Worker
@ -185,18 +186,17 @@ class LLMServer:
return request_outputs
def _decode_sequences(self, seq_groups: List[SequenceGroup]) -> None:
# Batch-decode the sequence outputs.
seqs: List[Sequence] = []
# Decode the sequence outputs.
for seq_group in seq_groups:
seqs.extend(seq_group.get_seqs(status=SequenceStatus.RUNNING))
output_tokens_per_seq = []
for seq in seqs:
output_tokens_per_seq.append(seq.get_output_token_ids())
output_texts = self.tokenizer.batch_decode(output_tokens_per_seq,
skip_special_tokens=True)
# Update the sequences with the output texts.
for seq, output_text in zip(seqs, output_texts):
seq.output_text = output_text
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
new_token, new_output_text = detokenize_incrementally(
self.tokenizer,
seq.output_tokens,
seq.get_last_token_id(),
skip_special_tokens=True,
)
seq.output_tokens.append(new_token)
seq.output_text = new_output_text
def _stop_sequences(self, seq_groups: List[SequenceGroup]) -> None:
# Stop the sequences.

View File

@ -1,8 +1,12 @@
from typing import Union
from typing import List, Tuple, Union
from transformers import (AutoConfig, AutoTokenizer, PreTrainedTokenizer,
PreTrainedTokenizerFast)
from cacheflow.logger import init_logger
logger = init_logger(__name__)
_MODEL_TYPES_WITH_SLOW_TOKENIZER = [
# LLaMA fast tokenizer has a bug related to protobuf.
# See https://github.com/WoosukKwon/cacheflow/issues/80#issue-1698550554
@ -17,5 +21,62 @@ def get_tokenizer(
) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
config = AutoConfig.from_pretrained(model_name)
if config.model_type in _MODEL_TYPES_WITH_SLOW_TOKENIZER:
if getattr(kwargs, "use_fast", False) == True:
raise ValueError(
f"Cannot use the fast tokenizer for {config.model_type} due to "
"bugs in the fast tokenizer.")
logger.info(
f"Using the slow tokenizer for {config.model_type} due to bugs in "
"the fast tokenizer. This could potentially lead to performance "
"degradation.")
kwargs["use_fast"] = False
return AutoTokenizer.from_pretrained(model_name, *args, **kwargs)
def detokenize_incrementally(
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
prev_output_tokens: List[str],
new_token_id: int,
skip_special_tokens: bool,
) -> Tuple[str, str]:
"""Detokenizes the new token in conjuction with the previous output tokens.
NOTE: This function does not update prev_output_tokens.
Returns:
new_token: The new token as a string.
output_text: The new output text as a string.
"""
new_token = tokenizer.convert_ids_to_tokens(
new_token_id, skip_special_tokens=skip_special_tokens)
output_tokens = prev_output_tokens + [new_token]
# Convert the tokens to a string.
# Optimization: If the tokenizer does not have `added_tokens_encoder`,
# then we can directly use `convert_tokens_to_string`.
if not getattr(tokenizer, "added_tokens_encoder", {}):
output_text = tokenizer.convert_tokens_to_string(output_tokens)
return new_token, output_text
# Adapted from https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/tokenization_utils.py#L921
# NOTE(woosuk): The following code is slow because it runs a for loop over
# the output_tokens. In Python, running a for loop over a list can be slow
# even when the loop body is very simple.
sub_texts = []
current_sub_text = []
for token in output_tokens:
if skip_special_tokens and token in tokenizer.all_special_ids:
continue
if token in tokenizer.added_tokens_encoder:
if current_sub_text:
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
sub_texts.append(sub_text)
current_sub_text = []
sub_texts.append(token)
else:
current_sub_text.append(token)
if current_sub_text:
sub_text = tokenizer.convert_tokens_to_string(current_sub_text)
sub_texts.append(sub_text)
output_text = " ".join(sub_texts)
return new_token, output_text