mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-22 03:14:30 +08:00
Support Min P Sampler (#1642)
This commit is contained in:
parent
dcc543a298
commit
e87557b069
@ -71,13 +71,18 @@ class Sampler(nn.Module):
|
||||
logits.div_(t.unsqueeze(dim=1))
|
||||
|
||||
# Apply top-p and top-k truncation.
|
||||
top_ps, top_ks = _get_top_p_top_k(input_metadata, self.vocab_size)
|
||||
top_ps, top_ks, min_ps = _get_top_p_top_k_min_p(
|
||||
input_metadata, self.vocab_size)
|
||||
assert len(top_ps) == len(top_ks) == logits.shape[0]
|
||||
do_top_p = any(p < 1.0 - _SAMPLING_EPS for p in top_ps)
|
||||
do_top_k = any(k != self.vocab_size for k in top_ks)
|
||||
if do_top_p or do_top_k:
|
||||
logits = _apply_top_p_top_k(logits, top_ps, top_ks)
|
||||
|
||||
do_min_p = any(mp > _SAMPLING_EPS for mp in min_ps)
|
||||
if do_min_p:
|
||||
logits = _apply_min_p(logits, min_ps)
|
||||
|
||||
# We use float32 for probabilities and log probabilities.
|
||||
# Compute the probabilities.
|
||||
probs = torch.softmax(logits, dim=-1, dtype=torch.float)
|
||||
@ -261,15 +266,17 @@ def _get_temperatures(input_metadata: InputMetadata) -> List[float]:
|
||||
return temperatures
|
||||
|
||||
|
||||
def _get_top_p_top_k(
|
||||
def _get_top_p_top_k_min_p(
|
||||
input_metadata: InputMetadata,
|
||||
vocab_size: int,
|
||||
) -> Tuple[List[float], List[int]]:
|
||||
) -> Tuple[List[float], List[int], List[float]]:
|
||||
top_ps: List[float] = []
|
||||
top_ks: List[int] = []
|
||||
min_ps: List[float] = []
|
||||
for i, seq_group in enumerate(input_metadata.seq_groups):
|
||||
seq_ids, sampling_params = seq_group
|
||||
top_p = sampling_params.top_p
|
||||
min_p = sampling_params.min_p
|
||||
# k should not be greater than the vocab size.
|
||||
top_k = min(sampling_params.top_k, vocab_size)
|
||||
# k=-1 means no truncation.
|
||||
@ -279,9 +286,11 @@ def _get_top_p_top_k(
|
||||
prompt_len = input_metadata.prompt_lens[i]
|
||||
top_ps += [top_p] * (prompt_len - 1)
|
||||
top_ks += [top_k] * (prompt_len - 1)
|
||||
min_ps += [min_p] * (prompt_len - 1)
|
||||
top_ps += [top_p] * len(seq_ids)
|
||||
top_ks += [top_k] * len(seq_ids)
|
||||
return top_ps, top_ks
|
||||
min_ps += [min_p] * len(seq_ids)
|
||||
return top_ps, top_ks, min_ps
|
||||
|
||||
|
||||
def _apply_top_p_top_k(
|
||||
@ -313,6 +322,24 @@ def _apply_top_p_top_k(
|
||||
return logits
|
||||
|
||||
|
||||
def _apply_min_p(
|
||||
logits: torch.Tensor,
|
||||
min_ps: List[float],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Adapted from
|
||||
https://github.com/oobabooga/text-generation-webui/blob/3146124ec01f02c8fb1650a6517cf1b60b537aaf/modules/sampler_hijack.py#L16C17-L16C17
|
||||
"""
|
||||
min_p = torch.tensor(min_ps, dtype=logits.dtype, device=logits.device)
|
||||
probs = torch.softmax(logits, dim=-1)
|
||||
top_probs, _ = probs.max(dim=-1, keepdim=True)
|
||||
scaled_min_p = min_p.unsqueeze(dim=1) * top_probs
|
||||
tokens_to_remove = probs < scaled_min_p
|
||||
logits = logits.masked_fill(tokens_to_remove, -float("inf"))
|
||||
|
||||
return logits
|
||||
|
||||
|
||||
def _greedy_sample(
|
||||
selected_seq_groups: List[Tuple[List[int], SamplingParams]],
|
||||
logprobs: torch.Tensor,
|
||||
|
||||
@ -52,6 +52,9 @@ class SamplingParams:
|
||||
to consider. Must be in (0, 1]. Set to 1 to consider all tokens.
|
||||
top_k: Integer that controls the number of top tokens to consider. Set
|
||||
to -1 to consider all tokens.
|
||||
min_p: Float that represents the minimum probability for a token to be
|
||||
considered, relative to the probability of the most likely token.
|
||||
Must be in [0, 1]. Set to 0 to disable this.
|
||||
use_beam_search: Whether to use beam search instead of sampling.
|
||||
length_penalty: Float that penalizes sequences based on their length.
|
||||
Used in beam search.
|
||||
@ -94,6 +97,7 @@ class SamplingParams:
|
||||
temperature: float = 1.0,
|
||||
top_p: float = 1.0,
|
||||
top_k: int = -1,
|
||||
min_p: int = 0.0,
|
||||
use_beam_search: bool = False,
|
||||
length_penalty: float = 1.0,
|
||||
early_stopping: Union[bool, str] = False,
|
||||
@ -115,6 +119,7 @@ class SamplingParams:
|
||||
self.temperature = temperature
|
||||
self.top_p = top_p
|
||||
self.top_k = top_k
|
||||
self.min_p = min_p
|
||||
self.use_beam_search = use_beam_search
|
||||
self.length_penalty = length_penalty
|
||||
self.early_stopping = early_stopping
|
||||
@ -167,6 +172,9 @@ class SamplingParams:
|
||||
if self.top_k < -1 or self.top_k == 0:
|
||||
raise ValueError(f"top_k must be -1 (disable), or at least 1, "
|
||||
f"got {self.top_k}.")
|
||||
if not 0.0 <= self.min_p <= 1.0:
|
||||
raise ValueError("min_p must be in [0, 1], got "
|
||||
f"{self.min_p}.")
|
||||
if self.max_tokens < 1:
|
||||
raise ValueError(
|
||||
f"max_tokens must be at least 1, got {self.max_tokens}.")
|
||||
@ -228,6 +236,7 @@ class SamplingParams:
|
||||
f"temperature={self.temperature}, "
|
||||
f"top_p={self.top_p}, "
|
||||
f"top_k={self.top_k}, "
|
||||
f"min_p={self.min_p}, "
|
||||
f"use_beam_search={self.use_beam_search}, "
|
||||
f"length_penalty={self.length_penalty}, "
|
||||
f"early_stopping={self.early_stopping}, "
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user