[ROCm][CI][Bugfix] Fixing the Multi-Modal Models Test (Extended) 1 group (#30013)

Signed-off-by: Andreas Karatzas <akaratza@amd.com>
This commit is contained in:
Andreas Karatzas 2025-12-04 05:00:16 -06:00 committed by GitHub
parent 6366c098d7
commit e96a6a6dca
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 139 additions and 9 deletions

View File

@ -987,7 +987,8 @@ steps:
commands:
- pytest -s -v test_lm_eval_correctness.py --config-list-file=configs/models-mm-small.txt --tp-size=1
- label: Multi-Modal Models Test (Extended) 1
- label: Multi-Modal Models Test (Extended) 1 # 60min
timeout_in_minutes: 120
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
# grade: Blocking
@ -1011,7 +1012,8 @@ steps:
- pip install git+https://github.com/TIGER-AI-Lab/Mantis.git
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=0) and not core_model'
- label: Multi-Modal Models Test (Extended) 3
- label: Multi-Modal Models Test (Extended) 3 # 75min
timeout_in_minutes: 150
mirror_hardwares: [amdexperimental]
agent_pool: mi325_1
# grade: Blocking

View File

@ -2,6 +2,8 @@
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Pytest configuration for vLLM tests."""
import warnings
import torch
from vllm.platforms import current_platform
@ -14,6 +16,20 @@ def pytest_configure(config):
if not current_platform.is_rocm():
return
skip_patterns = ["test_granite_speech.py"]
if any(pattern in str(arg) for arg in config.args for pattern in skip_patterns):
# Skip disabling SDP for Granite Speech tests on ROCm
return
# Disable Flash/MemEfficient SDP on ROCm to avoid HF Transformers
# accuracy issues
# TODO: Remove once ROCm SDP accuracy issues are resolved on HuggingFace
torch.backends.cuda.enable_flash_sdp(False)
torch.backends.cuda.enable_mem_efficient_sdp(False)
torch.backends.cuda.enable_math_sdp(True)
warnings.warn(
"ROCm: Disabled flash_sdp and mem_efficient_sdp, enabled math_sdp "
"to avoid HuggingFace Transformers accuracy issues",
UserWarning,
stacklevel=1,
)

View File

@ -403,12 +403,13 @@ VLM_TEST_SETTINGS = {
# So, we need to reduce the number of tokens for the test to pass.
max_tokens=8,
num_logprobs=10,
auto_cls=AutoModelForCausalLM,
marks=[large_gpu_mark(min_gb=32)],
),
"glm4_1v": VLMTestInfo(
models=["zai-org/GLM-4.1V-9B-Thinking"],
test_type=(VLMTestType.IMAGE, VLMTestType.MULTI_IMAGE),
prompt_formatter=lambda img_prompt: f"<|user|>\n{img_prompt}<|assistant|>",
prompt_formatter=lambda img_prompt: f"[gMASK]<|user|>\n{img_prompt}<|assistant|>\n", # noqa: E501
img_idx_to_prompt=lambda idx: "<|begin_of_image|><|image|><|end_of_image|>",
video_idx_to_prompt=lambda idx: "<|begin_of_video|><|video|><|end_of_video|>",
max_model_len=2048,
@ -423,6 +424,7 @@ VLM_TEST_SETTINGS = {
models=["zai-org/GLM-4.1V-9B-Thinking"],
# GLM4.1V require include video metadata for input
test_type=VLMTestType.CUSTOM_INPUTS,
prompt_formatter=lambda vid_prompt: f"[gMASK]<|user|>\n{vid_prompt}<|assistant|>\n", # noqa: E501
max_model_len=4096,
max_num_seqs=2,
auto_cls=AutoModelForImageTextToText,
@ -737,7 +739,13 @@ VLM_TEST_SETTINGS = {
max_model_len=8192,
max_num_seqs=2,
auto_cls=AutoModelForImageTextToText,
marks=[large_gpu_mark(min_gb=48)],
marks=[
large_gpu_mark(min_gb=48),
pytest.mark.skipif(
current_platform.is_rocm(),
reason="Model produces a vector of <UNK> output in HF on ROCm",
),
],
),
"qwen_vl": VLMTestInfo(
models=["Qwen/Qwen-VL"],

View File

@ -8,6 +8,7 @@ from transformers import AutoModelForSpeechSeq2Seq
from vllm.logprobs import SampleLogprobs
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
from ....conftest import AudioTestAssets, HfRunner, PromptAudioInput, VllmRunner
from ...registry import HF_EXAMPLE_MODELS
@ -34,6 +35,12 @@ audio_lora_path = MODEL_NAME
models = [MODEL_NAME]
@pytest.fixture(autouse=True)
def set_attention_backend_for_rocm(monkeypatch):
if current_platform.is_rocm():
monkeypatch.setenv("VLLM_ATTENTION_BACKEND", "TRITON_ATTN")
def run_test(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
@ -111,8 +118,12 @@ def run_test(
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_model_len", [2048])
@pytest.mark.parametrize(
"dtype", ["float16"] if current_platform.is_rocm() else ["bfloat16"]
)
@pytest.mark.parametrize(
"max_model_len", [512] if current_platform.is_rocm() else [2048]
)
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_models(

View File

@ -15,6 +15,7 @@ from transformers import AutoProcessor
from vllm import SamplingParams, TextPrompt, TokensPrompt
from vllm.logprobs import Logprob, SampleLogprobs
from vllm.multimodal import MultiModalDataBuiltins
from vllm.platforms import current_platform
from ....utils import VLLM_PATH, large_gpu_test
from ...utils import check_logprobs_close
@ -165,6 +166,15 @@ def load_outputs_w_logprobs(filename: "StrPath") -> OutputsLogprobs:
def test_chat(
vllm_runner, max_model_len: int, model: str, dtype: str, local_asset_server
) -> None:
if (
model == MISTRAL_SMALL_3_1_ID
and max_model_len == 65536
and current_platform.is_rocm()
):
pytest.skip(
"OOM on ROCm: 24B model with 65536 context length exceeds GPU memory"
)
EXPECTED_CHAT_LOGPROBS = load_outputs_w_logprobs(FIXTURE_LOGPROBS_CHAT[model])
with vllm_runner(
model,

View File

@ -140,7 +140,7 @@ def video_with_metadata_glm4_1v():
metadata = VIDEO_ASSETS[0].metadata
question = "Describe the video."
video_prompt = "<|begin_of_video|><|video|><|end_of_video|>"
formatted_prompt = f"<|user|>\n{video_prompt}{question}<|assistant|>\n"
formatted_prompt = f"[gMASK]<|user|>\n{video_prompt}{question}<|assistant|>\n"
scales = [0.1, 0.2, 0.25]
video_input = [

View File

@ -25,6 +25,7 @@ from transformers import (
from transformers.video_utils import VideoMetadata
from vllm.logprobs import SampleLogprobs
from vllm.platforms import current_platform
from vllm.utils.collection_utils import is_list_of
from .....conftest import HfRunner, ImageAsset, ImageTestAssets
@ -366,6 +367,40 @@ def gemma3_vllm_to_hf_output(vllm_output: RunnerOutput, model: str) -> RunnerOut
def glm4v_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
"""Patches and returns an instance of the HfRunner to use for GLM4V."""
if current_platform.is_rocm():
import types
config = hf_model.model.config
if hasattr(config, "num_layers") and not hasattr(config, "num_hidden_layers"):
config.num_hidden_layers = config.num_layers
config.output_hidden_states = True
def patched_prepare_cache(
self, generation_config, model_kwargs, *args, **kwargs
):
model_kwargs["past_key_values"] = None
model_kwargs["use_cache"] = False
return model_kwargs
hf_model.model._prepare_cache_for_generation = types.MethodType(
patched_prepare_cache, hf_model.model
)
original_generate = hf_model.model.generate
def patched_generate(*args, **kwargs):
kwargs["output_hidden_states"] = True
kwargs["return_dict_in_generate"] = True
return original_generate(*args, **kwargs)
hf_model.model.generate = patched_generate
original_forward = hf_model.model.forward
def patched_forward(*args, **kwargs):
kwargs["output_hidden_states"] = True
return original_forward(*args, **kwargs)
hf_model.model.forward = patched_forward
hf_processor = hf_model.processor
def processor(*args, text="", images=None, **kwargs):
@ -406,7 +441,15 @@ def glm4_1v_patch_hf_runner(hf_model: HfRunner) -> HfRunner:
if videos is not None and is_list_of(videos, tuple):
# If videos is a list of tuples, we assume each tuple contains
# (video_array, metadata) as in the case of GLM4.1V.
video_metadata = [[VideoMetadata(**video[1])] for video in videos]
# Filter out 'do_sample_frames' as it's not a valid VideoMetadata arg
video_metadata = [
[
VideoMetadata(
**{k: v for k, v in video[1].items() if k != "do_sample_frames"}
)
]
for video in videos
]
videos = [[video[0]] for video in videos]
else:
video_metadata = None

View File

@ -0,0 +1,24 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Pytest configuration for vLLM pooling tests."""
import os
import warnings
from vllm.platforms import current_platform
def pytest_collection_modifyitems(config, items):
"""Set FLEX_ATTENTION backend for SigLIP tests on ROCm."""
if not current_platform.is_rocm():
return
siglip_tests = [item for item in items if "test_siglip" in item.nodeid]
if siglip_tests:
os.environ["VLLM_ATTENTION_BACKEND"] = "FLEX_ATTENTION"
warnings.warn(
"ROCm: Set VLLM_ATTENTION_BACKEND=FLEX_ATTENTION for SigLIP tests",
UserWarning,
stacklevel=1,
)

View File

@ -667,6 +667,10 @@ _MULTIMODAL_EXAMPLE_MODELS = {
"moonshotai/Kimi-VL-A3B-Instruct",
extras={"thinking": "moonshotai/Kimi-VL-A3B-Thinking"},
trust_remote_code=True,
max_transformers_version="4.53.3",
transformers_version_reason="HF model uses deprecated transformers API "
"(PytorchGELUTanh, DynamicCache.seen_tokens, and more). See: "
"https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct/discussions/31",
),
"LightOnOCRForConditionalGeneration": _HfExamplesInfo(
"lightonai/LightOnOCR-1B",

View File

@ -31,6 +31,7 @@ from vllm.logger import init_logger
from vllm.model_executor.layers.batch_invariant import (
vllm_is_batch_invariant,
)
from vllm.platforms import current_platform
from vllm.utils.math_utils import cdiv
from vllm.utils.torch_utils import is_torch_equal_or_newer
from vllm.v1.attention.backends.utils import (
@ -927,7 +928,18 @@ def get_kernel_options(
if torch.cuda.is_available():
device_props = torch.cuda.get_device_properties()
max_shared_memory = device_props.shared_memory_per_block_optin
# ROCm doesn't expose shared_memory_per_block_optin attribute
# AMD GPUs typically have 64KB LDS (Local Data Share) per workgroup
if hasattr(device_props, "shared_memory_per_block_optin"):
max_shared_memory = device_props.shared_memory_per_block_optin
elif current_platform.is_rocm():
# ROCm fallback: use 64KB
max_shared_memory = 65536
else:
raise RuntimeError(
"Unable to determine shared memory size on this hardware."
)
if max_shared_memory < 144 * 1024:
block_m_candidate = ensure_divisible(
max(1, block_m_candidate // 2), block_m