mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-02 01:54:12 +08:00
This reverts commit 5c976a7e1a1bec875bf6474824b7dff39e38de18.
This commit is contained in:
parent
5c976a7e1a
commit
ea356004d4
@ -7,31 +7,6 @@ import torch.nn as nn
|
||||
from vllm._C import ops
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
eps: float = 1e-6,
|
||||
) -> None:
|
||||
super().__init__(hidden_size, eps=eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
residual: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
||||
"""normalization."""
|
||||
if residual is not None:
|
||||
x = x + residual
|
||||
residual = x
|
||||
x = super().forward(x)
|
||||
if residual is None:
|
||||
return x
|
||||
else:
|
||||
return x, residual
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
"""Root mean square normalization.
|
||||
|
||||
|
||||
@ -10,8 +10,8 @@ logger = init_logger(__name__)
|
||||
|
||||
# Architecture -> (module, class).
|
||||
_MODELS = {
|
||||
"AquilaModel": ("llama", "LlamaForCausalLM"),
|
||||
"AquilaForCausalLM": ("llama", "LlamaForCausalLM"), # AquilaChat2
|
||||
"AquilaModel": ("aquila", "AquilaForCausalLM"),
|
||||
"AquilaForCausalLM": ("aquila", "AquilaForCausalLM"), # AquilaChat2
|
||||
"BaiChuanForCausalLM": ("baichuan", "BaiChuanForCausalLM"), # baichuan-7b
|
||||
"BaichuanForCausalLM": ("baichuan", "BaichuanForCausalLM"), # baichuan-13b
|
||||
"BloomForCausalLM": ("bloom", "BloomForCausalLM"),
|
||||
@ -24,12 +24,12 @@ _MODELS = {
|
||||
"GPTBigCodeForCausalLM": ("gpt_bigcode", "GPTBigCodeForCausalLM"),
|
||||
"GPTJForCausalLM": ("gpt_j", "GPTJForCausalLM"),
|
||||
"GPTNeoXForCausalLM": ("gpt_neox", "GPTNeoXForCausalLM"),
|
||||
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"InternLMForCausalLM": ("internlm", "InternLMForCausalLM"),
|
||||
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
|
||||
"LlamaForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
# For decapoda-research/llama-*
|
||||
"LLaMAForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"MistralForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"MistralForCausalLM": ("mistral", "MistralForCausalLM"),
|
||||
"MixtralForCausalLM": ("mixtral", "MixtralForCausalLM"),
|
||||
"QuantMixtralForCausalLM": ("mixtral_quant", "MixtralForCausalLM"),
|
||||
# transformers's mpt class has lower case
|
||||
@ -41,6 +41,7 @@ _MODELS = {
|
||||
"Qwen2ForCausalLM": ("qwen2", "Qwen2ForCausalLM"),
|
||||
"RWForCausalLM": ("falcon", "FalconForCausalLM"),
|
||||
"StableLMEpochForCausalLM": ("stablelm", "StablelmForCausalLM"),
|
||||
"YiForCausalLM": ("yi", "YiForCausalLM")
|
||||
}
|
||||
|
||||
# Models not supported by ROCm.
|
||||
|
||||
342
vllm/model_executor/models/aquila.py
Normal file
342
vllm/model_executor/models/aquila.py
Normal file
@ -0,0 +1,342 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
from vllm.transformers_utils.configs.aquila import AquilaConfig
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class AquilaMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class AquilaRMSNorm(nn.Module):
|
||||
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
AquilaRMSNorm is equivalent to T5LayerNorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states):
|
||||
input_dtype = hidden_states.dtype
|
||||
variance = hidden_states.to(torch.float32).pow(2).mean(-1,
|
||||
keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(variance +
|
||||
self.variance_epsilon)
|
||||
|
||||
return (self.weight * hidden_states).to(input_dtype)
|
||||
|
||||
|
||||
class AquilaAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
max_position_embeddings: int = 8192,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
self.num_kv_heads = self.total_num_kv_heads // tp_size
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=self.max_position_embeddings,
|
||||
base=self.rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class AquilaDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: AquilaConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = AquilaAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
rope_scaling=rope_scaling,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.mlp = AquilaMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.input_layernorm = AquilaRMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class AquilaModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: AquilaConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
AquilaDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class AquilaForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = AquilaModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
@ -18,19 +18,305 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only BaiChuan model compatible with HuggingFace weights."""
|
||||
from typing import Optional
|
||||
import math
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.config import LoRAConfig
|
||||
from torch import nn
|
||||
|
||||
from vllm.model_executor.layers.linear import LinearMethodBase
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class BaiChuanBaseForCausalLM(LlamaForCausalLM):
|
||||
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
|
||||
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
|
||||
base = torch.tensor(
|
||||
2**(-(2**-(math.log2(closest_power_of_2) - 3))),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
||||
slopes = torch.pow(base, powers)
|
||||
|
||||
if closest_power_of_2 != total_num_heads:
|
||||
extra_base = torch.tensor(
|
||||
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
num_remaining_heads = min(closest_power_of_2,
|
||||
total_num_heads - closest_power_of_2)
|
||||
extra_powers = torch.arange(start=1,
|
||||
end=1 + 2 * num_remaining_heads,
|
||||
step=2,
|
||||
dtype=torch.int32)
|
||||
slopes = torch.cat(
|
||||
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
||||
return slopes
|
||||
|
||||
|
||||
class BaiChuanMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class BaiChuanAttention(nn.Module):
|
||||
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
position_embedding: str,
|
||||
rope_theta: float = 10000,
|
||||
max_position_embeddings: int = 8192,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
|
||||
)
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||
self.num_heads = (self.total_num_heads //
|
||||
tensor_model_parallel_world_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.postion_embedding = position_embedding
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
self.W_pack = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
# Create the alibi slopes and slice them.
|
||||
if self.postion_embedding == "ALIBI":
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
head_start = tp_rank * self.num_heads
|
||||
head_end = (tp_rank + 1) * self.num_heads
|
||||
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
|
||||
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
||||
|
||||
scaling = self.head_dim**-0.5
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
scaling,
|
||||
alibi_slopes=alibi_slopes)
|
||||
else:
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=self.max_position_embeddings,
|
||||
base=self.rope_theta,
|
||||
)
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.attn = PagedAttention(self.num_heads, self.head_dim,
|
||||
self.scaling)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.W_pack(hidden_states)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
if self.postion_embedding != "ALIBI":
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class BaiChuanDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: BaiChuanConfig,
|
||||
position_embedding: str,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = BaiChuanAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
position_embedding=position_embedding,
|
||||
rope_theta=rope_theta,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.mlp = BaiChuanMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class BaiChuanModel(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: BaiChuanConfig,
|
||||
position_embedding: str,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
BaiChuanDecoderLayer(config, position_embedding, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class BaiChuanBaseForCausalLM(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config,
|
||||
position_embedding: str,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = BaiChuanModel(config, position_embedding, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
@ -42,15 +328,9 @@ class BaiChuanBaseForCausalLM(LlamaForCausalLM):
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
param_weight_map = [
|
||||
("qkv_proj", "W_pack"),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
for (param_name, weight_name) in param_weight_map:
|
||||
name = name.replace(weight_name, param_name)
|
||||
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if name == "lm_head.weight":
|
||||
@ -88,28 +368,19 @@ class BaiChuanBaseForCausalLM(LlamaForCausalLM):
|
||||
class BaichuanForCausalLM(BaiChuanBaseForCausalLM):
|
||||
"""Baichuan 13B and Baichuan2 7B/13B."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[PretrainedConfig] = None,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
if config.hidden_size != 4096: # baichuan 13b, baichuan2 13b
|
||||
config.postion_embedding = "ALIBI"
|
||||
super().__init__(config=config,
|
||||
linear_method=linear_method,
|
||||
lora_config=lora_config)
|
||||
def __init__(self,
|
||||
config,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
if config.hidden_size == 4096: # baichuan2 7b
|
||||
super().__init__(config, "ROPE", linear_method)
|
||||
else: # baichuan 13b, baichuan2 13b
|
||||
super().__init__(config, "ALIBI", linear_method)
|
||||
|
||||
|
||||
class BaiChuanForCausalLM(BaiChuanBaseForCausalLM):
|
||||
"""Baichuan 7B."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[PretrainedConfig] = None,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
super().__init__(config=config,
|
||||
linear_method=linear_method,
|
||||
lora_config=lora_config)
|
||||
def __init__(self,
|
||||
config,
|
||||
linear_method: Optional[LinearMethodBase] = None):
|
||||
super().__init__(config, "ROPE", linear_method)
|
||||
|
||||
299
vllm/model_executor/models/internlm.py
Normal file
299
vllm/model_executor/models/internlm.py
Normal file
@ -0,0 +1,299 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import LlamaConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class InternLMMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class InternLMAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
bias: bool,
|
||||
rope_theta: float = 10000,
|
||||
max_position_embeddings: int = 8192,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tensor_model_parallel_world_size = (
|
||||
get_tensor_model_parallel_world_size())
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||
self.num_heads = (self.total_num_heads //
|
||||
tensor_model_parallel_world_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
bias=bias,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=bias,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=self.max_position_embeddings,
|
||||
base=self.rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class InternLMDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = InternLMAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
bias=config.bias,
|
||||
rope_theta=rope_theta,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
linear_method=linear_method,
|
||||
rope_scaling=getattr(config, "rope_scaling", None),
|
||||
)
|
||||
self.mlp = InternLMMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class InternLMModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
InternLMDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class InternLMForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = InternLMModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
@ -1,27 +1,276 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.config import LoRAConfig
|
||||
|
||||
from vllm.model_executor.layers.linear import LinearMethodBase
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class InternLM2ForCausalLM(LlamaForCausalLM):
|
||||
class InternLM2MLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[PretrainedConfig] = None,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
super().__init__(config=config,
|
||||
linear_method=linear_method,
|
||||
lora_config=lora_config)
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.w2 = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.w2(x)
|
||||
return x
|
||||
|
||||
|
||||
class InternLM2Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.wqkv = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.wo = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.wqkv(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.wo(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class InternLMDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.attention = InternLM2Attention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.feed_forward = InternLM2MLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.attention_norm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.attention_norm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.attention_norm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.attention(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.ffn_norm(hidden_states, residual)
|
||||
hidden_states = self.feed_forward(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class InternLM2Model(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.tok_embeddings = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
InternLMDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.tok_embeddings(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class InternLM2ForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = InternLM2Model(config, linear_method)
|
||||
self.output = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.output.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
@ -33,23 +282,9 @@ class InternLM2ForCausalLM(LlamaForCausalLM):
|
||||
("gate_up_proj", "w1", 0),
|
||||
("gate_up_proj", "w3", 1),
|
||||
]
|
||||
param_weight_map = [
|
||||
("qkv_proj", "wqkv"),
|
||||
("o_proj", "wo"),
|
||||
("down_proj", "w2"),
|
||||
("input_layernorm", "attention_norm"),
|
||||
("post_attention_layernorm", "ffn_norm"),
|
||||
("embed_tokens", "tok_embeddings"),
|
||||
(".self_attn.", ".attention."),
|
||||
("mlp", "feed_forward"),
|
||||
("lm_head", "output"),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
for (param_name, weight_name) in param_weight_map:
|
||||
name = name.replace(weight_name, param_name)
|
||||
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
@ -68,7 +303,7 @@ class InternLM2ForCausalLM(LlamaForCausalLM):
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
if "qkv_proj" in name:
|
||||
if "wqkv" in name:
|
||||
config = self.config
|
||||
kv_groups = config.num_attention_heads // config.num_key_value_heads
|
||||
head_dim = config.hidden_size // config.num_attention_heads
|
||||
|
||||
@ -21,9 +21,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only LLaMA model compatible with HuggingFace weights."""
|
||||
from typing import List, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import LlamaConfig
|
||||
@ -41,60 +40,34 @@ from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead, DEFAULT_VOCAB_PADDING_SIZE)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
from vllm.config import LoRAConfig
|
||||
|
||||
from copy import deepcopy
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
def _get_alibi_slopes(total_num_heads: int) -> torch.Tensor:
|
||||
closest_power_of_2 = 2**math.floor(math.log2(total_num_heads))
|
||||
base = torch.tensor(
|
||||
2**(-(2**-(math.log2(closest_power_of_2) - 3))),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
||||
slopes = torch.pow(base, powers)
|
||||
|
||||
if closest_power_of_2 != total_num_heads:
|
||||
extra_base = torch.tensor(
|
||||
2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
num_remaining_heads = min(closest_power_of_2,
|
||||
total_num_heads - closest_power_of_2)
|
||||
extra_powers = torch.arange(start=1,
|
||||
end=1 + 2 * num_remaining_heads,
|
||||
step=2,
|
||||
dtype=torch.int32)
|
||||
slopes = torch.cat(
|
||||
[slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
||||
return slopes
|
||||
|
||||
|
||||
class LlamaMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
config.hidden_size, [config.intermediate_size] * 2,
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(config.intermediate_size,
|
||||
config.hidden_size,
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
hidden_act = getattr(config, "hidden_act", "silu")
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
@ -111,19 +84,21 @@ class LlamaAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = getattr(config, "num_attention_heads", None)
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
|
||||
# defaut to mha
|
||||
self.total_num_kv_heads = getattr(config, "num_key_value_heads",
|
||||
self.total_num_heads)
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
@ -133,68 +108,39 @@ class LlamaAttention(nn.Module):
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
# internlm
|
||||
bias = getattr(config, "bias", False)
|
||||
|
||||
# stablelm
|
||||
qkv_bias = getattr(config, "use_qkv_bias", False)
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
self.hidden_size,
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=bias or qkv_bias,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=bias,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
|
||||
# mistral
|
||||
sliding_window = getattr(config, "sliding_window", None)
|
||||
|
||||
self.postion_embedding = getattr(config, "postion_embedding", "ROPE")
|
||||
# Create the alibi slopes and slice them.
|
||||
if self.postion_embedding == "ALIBI":
|
||||
tp_rank = get_tensor_model_parallel_rank()
|
||||
head_start = tp_rank * self.num_heads
|
||||
head_end = (tp_rank + 1) * self.num_heads
|
||||
alibi_slopes = _get_alibi_slopes(self.total_num_heads)
|
||||
alibi_slopes = alibi_slopes[head_start:head_end].tolist()
|
||||
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
alibi_slopes=alibi_slopes,
|
||||
sliding_window=sliding_window)
|
||||
else:
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
# stablelm
|
||||
rope_pct = getattr(config, "rope_pct", 1)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=int(self.head_dim * rope_pct),
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
sliding_window=sliding_window)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -205,8 +151,7 @@ class LlamaAttention(nn.Module):
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
if self.postion_embedding != "ALIBI":
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
@ -219,20 +164,32 @@ class LlamaDecoderLayer(nn.Module):
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
norm: Optional[torch.Tensor] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = LlamaAttention(
|
||||
config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.mlp = LlamaMLP(
|
||||
config,
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.input_layernorm = deepcopy(norm)
|
||||
self.post_attention_layernorm = deepcopy(norm)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -269,7 +226,6 @@ class LlamaModel(nn.Module):
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
norm: Optional[torch.Tensor] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
@ -285,10 +241,10 @@ class LlamaModel(nn.Module):
|
||||
org_num_embeddings=config.vocab_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
LlamaDecoderLayer(config, linear_method, norm)
|
||||
LlamaDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = norm
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
@ -319,18 +275,12 @@ class LlamaForCausalLM(nn.Module):
|
||||
self,
|
||||
config: LlamaConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
norm: Optional[torch.Tensor] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
if norm is None:
|
||||
norm = RMSNorm(config.hidden_size, config.rms_norm_eps)
|
||||
self.model = LlamaModel(config,
|
||||
linear_method,
|
||||
norm=norm,
|
||||
lora_config=lora_config)
|
||||
self.model = LlamaModel(config, linear_method, lora_config=lora_config)
|
||||
unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
|
||||
352
vllm/model_executor/models/mistral.py
Normal file
352
vllm/model_executor/models/mistral.py
Normal file
@ -0,0 +1,352 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Mistral model compatible with HuggingFace weights."""
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import MistralConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead, DEFAULT_VOCAB_PADDING_SIZE)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
from vllm.config import LoRAConfig
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class MistralMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class MistralAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
max_position: int = 4096 * 32,
|
||||
rope_theta: float = 10000,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
sliding_window: Optional[int] = None) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.sliding_window = sliding_window
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position,
|
||||
base=self.rope_theta,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
sliding_window=self.sliding_window)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class MistralDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MistralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Requires transformers > 4.32.0
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
self.self_attn = MistralAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
linear_method=linear_method,
|
||||
sliding_window=config.sliding_window)
|
||||
self.mlp = MistralMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class MistralModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MistralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
lora_vocab = (lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
self.org_vocab_size = config.vocab_size
|
||||
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
MistralDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MistralForCausalLM(nn.Module):
|
||||
supports_lora = True
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: MistralConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = MistralModel(config,
|
||||
linear_method,
|
||||
lora_config=lora_config)
|
||||
unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE
|
||||
# We need bigger padding if using lora for kernel
|
||||
# compatibility
|
||||
if not lora_config else lora_config.lora_vocab_padding_size,
|
||||
)
|
||||
self.sampler = Sampler(unpadded_vocab_size, config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
@ -4,33 +4,253 @@
|
||||
# Copyright (c) Alibaba Cloud.
|
||||
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
|
||||
"""Inference-only QWen model compatible with HuggingFace weights."""
|
||||
from typing import Optional
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.config import LoRAConfig
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from vllm.model_executor.layers.linear import LinearMethodBase
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
from vllm.transformers_utils.configs.qwen import QWenConfig
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class QWenLMHeadModel(LlamaForCausalLM):
|
||||
class QWenMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[PretrainedConfig] = None,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str = "silu",
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
norm = RMSNorm(config.hidden_size, config.layer_norm_epsilon)
|
||||
config.use_qkv_bias = True
|
||||
config.intermediate_size = config.intermediate_size // 2
|
||||
super().__init__(config=config,
|
||||
linear_method=linear_method,
|
||||
norm=norm,
|
||||
lora_config=lora_config)
|
||||
):
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.c_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.c_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class QWenAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
max_position_embeddings: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
|
||||
)
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||
self.num_heads = (self.total_num_heads //
|
||||
tensor_model_parallel_world_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.c_attn = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
bias=True,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.c_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.scaling = self.head_dim**-0.5
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads, self.head_dim, self.scaling)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.c_attn(hidden_states)
|
||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
|
||||
output, _ = self.c_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class QWenBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: QWenConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
self.attn = QWenAttention(config.hidden_size,
|
||||
config.num_attention_heads,
|
||||
config.max_position_embeddings,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
linear_method=linear_method)
|
||||
|
||||
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
self.mlp = QWenMLP(config.hidden_size,
|
||||
config.intermediate_size // 2,
|
||||
linear_method=linear_method)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln_1(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.ln_1(hidden_states, residual)
|
||||
hidden_states = self.attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.ln_2(hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class QWenModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: QWenConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.wte = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.h = nn.ModuleList([
|
||||
QWenBlock(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.wte(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.h)):
|
||||
layer = self.h[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.ln_f(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class QWenLMHeadModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: QWenConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.transformer = QWenModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
@ -42,24 +262,9 @@ class QWenLMHeadModel(LlamaForCausalLM):
|
||||
("gate_up_proj", "w2", 0),
|
||||
("gate_up_proj", "w1", 1),
|
||||
]
|
||||
param_weight_map = [
|
||||
("model", "transformer"),
|
||||
(".self_attn.", ".attn."),
|
||||
(".layers.", ".h."),
|
||||
("qkv_proj", "c_attn"),
|
||||
(".self_attn.o_proj", ".self_attn.c_proj"),
|
||||
("norm", "ln_f"),
|
||||
("mlp.down_proj", "mlp.c_proj"),
|
||||
("input_layernorm", "ln_1"),
|
||||
("post_attention_layernorm", "ln_2"),
|
||||
("embed_tokens", "wte"),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
for (param_name, weight_name) in param_weight_map:
|
||||
name = name.replace(weight_name, param_name)
|
||||
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
|
||||
@ -17,26 +17,283 @@
|
||||
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/modeling_stablelm_epoch.py
|
||||
# https://huggingface.co/stabilityai/stablelm-3b-4e1t/blob/main/config.json
|
||||
"""Inference-only StabeLM (https://github.com/Stability-AI/StableLM) model compatible with HuggingFace weights."""
|
||||
from typing import Optional
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.model_executor.layers.linear import LinearMethodBase
|
||||
from vllm.model_executor.layers.layernorm import LayerNorm
|
||||
from vllm.model_executor.models.llama import LlamaForCausalLM
|
||||
from vllm.config import LoRAConfig
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class StablelmForCausalLM(LlamaForCausalLM):
|
||||
class StablelmMLP(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
config.hidden_size, [config.intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(config.intermediate_size,
|
||||
config.hidden_size,
|
||||
bias=False)
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class StablelmAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.hidden_size = config.hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = config.num_attention_heads
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
|
||||
self.total_num_key_value_heads = config.num_key_value_heads
|
||||
if self.total_num_key_value_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_key_value_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_key_value_heads == 0
|
||||
self.num_key_value_heads = max(
|
||||
1, self.total_num_key_value_heads // tp_size)
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.max_position_embeddings = config.max_position_embeddings
|
||||
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_key_value_heads * self.head_dim
|
||||
self.qkv_bias = getattr(config, "use_qkv_bias", False)
|
||||
if (self.head_dim * self.num_heads * tp_size) != self.hidden_size:
|
||||
raise ValueError(
|
||||
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
||||
f" and `num_heads`: {self.num_heads}).")
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(self.hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_key_value_heads,
|
||||
self.qkv_bias,
|
||||
linear_method=linear_method)
|
||||
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
|
||||
self.hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.rotary_ndims = int(self.head_dim * self.config.rope_pct)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.rotary_ndims,
|
||||
max_position=self.config.max_position_embeddings,
|
||||
base=self.config.rope_theta,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_key_value_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class StablelmDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Optional[PretrainedConfig] = None,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
lora_config: Optional[LoRAConfig] = None,
|
||||
) -> None:
|
||||
norm = LayerNorm(config.hidden_size, config.norm_eps)
|
||||
super().__init__(config=config,
|
||||
linear_method=linear_method,
|
||||
norm=norm,
|
||||
lora_config=lora_config)
|
||||
super().__init__()
|
||||
self.self_attn = StablelmAttention(config)
|
||||
self.mlp = StablelmMLP(config, linear_method)
|
||||
self.input_layernorm = nn.LayerNorm(config.hidden_size,
|
||||
eps=config.norm_eps)
|
||||
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
|
||||
eps=config.norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class StableLMEpochModel(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None) -> None:
|
||||
super().__init__()
|
||||
# self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
StablelmDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = nn.LayerNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
)
|
||||
hidden_states = self.norm(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class StablelmForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = StableLMEpochModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if ("rotary_emb.cos_cached" in name
|
||||
or "rotary_emb.sin_cached" in name):
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
|
||||
330
vllm/model_executor/models/yi.py
Normal file
330
vllm/model_executor/models/yi.py
Normal file
@ -0,0 +1,330 @@
|
||||
# coding=utf-8
|
||||
# Adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only Yi model (https://01.ai) compatible with HuggingFace weights."""
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from vllm.transformers_utils.configs.yi import YiConfig
|
||||
|
||||
from vllm.model_executor.input_metadata import InputMetadata
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.attention import PagedAttention
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import Sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
VocabParallelEmbedding, ParallelLMHead)
|
||||
from vllm.model_executor.parallel_utils.parallel_state import (
|
||||
get_tensor_model_parallel_world_size)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.model_executor.weight_utils import (default_weight_loader,
|
||||
hf_model_weights_iterator)
|
||||
from vllm.sequence import SamplerOutput
|
||||
|
||||
KVCache = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
|
||||
class YiMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
hidden_size, [intermediate_size] * 2,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
self.down_proj = RowParallelLinear(intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class YiAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[Dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.o_proj = RowParallelLinear(
|
||||
self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=self.rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = PagedAttention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
k_cache, v_cache = kv_cache
|
||||
attn_output = self.attn(q, k, v, k_cache, v_cache, input_metadata)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class YiDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: YiConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = YiAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.mlp = YiMLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
linear_method=linear_method,
|
||||
)
|
||||
self.ln1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.ln2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: KVCache,
|
||||
input_metadata: InputMetadata,
|
||||
residual: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.ln1(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.ln1(hidden_states, residual)
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
input_metadata=input_metadata,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.ln2(hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
class YiModel(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: YiConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
self.layers = nn.ModuleList([
|
||||
YiDecoderLayer(config, linear_method)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
residual = None
|
||||
for i in range(len(self.layers)):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
kv_caches[i],
|
||||
input_metadata,
|
||||
residual,
|
||||
)
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class YiForCausalLM(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: YiConfig,
|
||||
linear_method: Optional[LinearMethodBase] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.linear_method = linear_method
|
||||
self.model = YiModel(config, linear_method)
|
||||
self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size)
|
||||
self.sampler = Sampler(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: List[KVCache],
|
||||
input_metadata: InputMetadata,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
input_metadata)
|
||||
return hidden_states
|
||||
|
||||
def sample(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
|
||||
sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def load_weights(self,
|
||||
model_name_or_path: str,
|
||||
cache_dir: Optional[str] = None,
|
||||
load_format: str = "auto",
|
||||
revision: Optional[str] = None):
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
("qkv_proj", "q_proj", "q"),
|
||||
("qkv_proj", "k_proj", "k"),
|
||||
("qkv_proj", "v_proj", "v"),
|
||||
("gate_up_proj", "gate_proj", 0),
|
||||
("gate_up_proj", "up_proj", 1),
|
||||
]
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in hf_model_weights_iterator(
|
||||
model_name_or_path, cache_dir, load_format, revision):
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
@ -5,10 +5,14 @@ from transformers import AutoConfig, PretrainedConfig
|
||||
from vllm.transformers_utils.configs import *
|
||||
|
||||
_CONFIG_REGISTRY = {
|
||||
"aquila": AquilaConfig,
|
||||
"baichuan": BaiChuanConfig,
|
||||
"chatglm": ChatGLMConfig,
|
||||
"mpt": MPTConfig,
|
||||
"qwen": QWenConfig,
|
||||
"RefinedWeb": RWConfig, # For tiiuae/falcon-40b(-instruct)
|
||||
"RefinedWebModel": RWConfig, # For tiiuae/falcon-7b(-instruct)
|
||||
"yi": YiConfig,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -1,12 +1,20 @@
|
||||
from vllm.transformers_utils.configs.aquila import AquilaConfig
|
||||
from vllm.transformers_utils.configs.baichuan import BaiChuanConfig
|
||||
from vllm.transformers_utils.configs.chatglm import ChatGLMConfig
|
||||
from vllm.transformers_utils.configs.mpt import MPTConfig
|
||||
from vllm.transformers_utils.configs.qwen import QWenConfig
|
||||
# RWConfig is for the original tiiuae/falcon-40b(-instruct) and
|
||||
# tiiuae/falcon-7b(-instruct) models. Newer Falcon models will use the
|
||||
# `FalconConfig` class from the official HuggingFace transformers library.
|
||||
from vllm.transformers_utils.configs.falcon import RWConfig
|
||||
from vllm.transformers_utils.configs.yi import YiConfig
|
||||
|
||||
__all__ = [
|
||||
"AquilaConfig",
|
||||
"BaiChuanConfig",
|
||||
"ChatGLMConfig",
|
||||
"MPTConfig",
|
||||
"QWenConfig",
|
||||
"RWConfig",
|
||||
"YiConfig",
|
||||
]
|
||||
|
||||
69
vllm/transformers_utils/configs/aquila.py
Normal file
69
vllm/transformers_utils/configs/aquila.py
Normal file
@ -0,0 +1,69 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Aquila model configuration"""
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
class AquilaConfig(PretrainedConfig):
|
||||
model_type = "aquila"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=100008,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=None,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.006,
|
||||
rms_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
62
vllm/transformers_utils/configs/baichuan.py
Normal file
62
vllm/transformers_utils/configs/baichuan.py
Normal file
@ -0,0 +1,62 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class BaiChuanConfig(PretrainedConfig):
|
||||
model_type = "baichuan"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=64000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
60
vllm/transformers_utils/configs/qwen.py
Normal file
60
vllm/transformers_utils/configs/qwen.py
Normal file
@ -0,0 +1,60 @@
|
||||
# Copyright (c) Alibaba Cloud.
|
||||
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
|
||||
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
|
||||
class QWenConfig(PretrainedConfig):
|
||||
model_type = "qwen"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=151936,
|
||||
hidden_size=4096,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
emb_dropout_prob=0.0,
|
||||
attn_dropout_prob=0.0,
|
||||
layer_norm_epsilon=1e-6,
|
||||
initializer_range=0.02,
|
||||
max_position_embeddings=8192,
|
||||
scale_attn_weights=True,
|
||||
use_cache=True,
|
||||
bf16=False,
|
||||
fp16=False,
|
||||
fp32=False,
|
||||
kv_channels=128,
|
||||
rotary_pct=1.0,
|
||||
rotary_emb_base=10000,
|
||||
use_dynamic_ntk=True,
|
||||
use_logn_attn=True,
|
||||
use_flash_attn="auto",
|
||||
intermediate_size=22016,
|
||||
no_bias=True,
|
||||
tie_word_embeddings=False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.emb_dropout_prob = emb_dropout_prob
|
||||
self.attn_dropout_prob = attn_dropout_prob
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.initializer_range = initializer_range
|
||||
self.scale_attn_weights = scale_attn_weights
|
||||
self.use_cache = use_cache
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.bf16 = bf16
|
||||
self.fp16 = fp16
|
||||
self.fp32 = fp32
|
||||
self.kv_channels = kv_channels
|
||||
self.rotary_pct = rotary_pct
|
||||
self.rotary_emb_base = rotary_emb_base
|
||||
self.use_dynamic_ntk = use_dynamic_ntk
|
||||
self.use_logn_attn = use_logn_attn
|
||||
self.use_flash_attn = use_flash_attn
|
||||
self.no_bias = no_bias
|
||||
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
||||
64
vllm/transformers_utils/configs/yi.py
Normal file
64
vllm/transformers_utils/configs/yi.py
Normal file
@ -0,0 +1,64 @@
|
||||
""" Yi model configuration"""
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
Yi_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
|
||||
|
||||
class YiConfig(PretrainedConfig):
|
||||
r"""
|
||||
Reference:
|
||||
https://huggingface.co/01-ai/Yi-6B/blob/main/configuration_yi.py
|
||||
"""
|
||||
model_type = "Yi"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=64000,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
num_hidden_layers=32,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=4,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=4096,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-5,
|
||||
use_cache=True,
|
||||
pad_token_id=0,
|
||||
bos_token_id=1,
|
||||
eos_token_id=2,
|
||||
tie_word_embeddings=False,
|
||||
output_attentions=False,
|
||||
rope_theta=5000000.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.output_attentions = output_attentions
|
||||
self.rope_theta = rope_theta
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
Loading…
x
Reference in New Issue
Block a user