mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-21 05:45:27 +08:00
Lora MoE Align Improvements (#29257)
Signed-off-by: gnovack <gnovack@amazon.com>
This commit is contained in:
parent
db14f61f2d
commit
ea657f2078
@ -944,7 +944,6 @@ target_compile_definitions(_C PRIVATE CUTLASS_ENABLE_DIRECT_CUDA_DRIVER_CALL=1)
|
|||||||
set(VLLM_MOE_EXT_SRC
|
set(VLLM_MOE_EXT_SRC
|
||||||
"csrc/moe/torch_bindings.cpp"
|
"csrc/moe/torch_bindings.cpp"
|
||||||
"csrc/moe/moe_align_sum_kernels.cu"
|
"csrc/moe/moe_align_sum_kernels.cu"
|
||||||
"csrc/moe/moe_lora_align_sum_kernels.cu"
|
|
||||||
"csrc/moe/topk_softmax_kernels.cu")
|
"csrc/moe/topk_softmax_kernels.cu")
|
||||||
|
|
||||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||||
|
|||||||
@ -14,7 +14,6 @@
|
|||||||
|
|
||||||
namespace vllm {
|
namespace vllm {
|
||||||
namespace moe {
|
namespace moe {
|
||||||
|
|
||||||
namespace batched_moe_align_block_size {
|
namespace batched_moe_align_block_size {
|
||||||
|
|
||||||
// Note num_threads needs to be 1024 for BlockScan Reduction in the kernel.
|
// Note num_threads needs to be 1024 for BlockScan Reduction in the kernel.
|
||||||
@ -80,23 +79,30 @@ __global__ void batched_moe_align_block_size_kernel(
|
|||||||
} // namespace batched_moe_align_block_size
|
} // namespace batched_moe_align_block_size
|
||||||
|
|
||||||
template <typename scalar_t>
|
template <typename scalar_t>
|
||||||
__global__ void moe_align_block_size_kernel(
|
__device__ void _moe_align_block_size(
|
||||||
const scalar_t* __restrict__ topk_ids,
|
const scalar_t* __restrict__ topk_ids,
|
||||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||||
int32_t* __restrict__ total_tokens_post_pad,
|
int32_t* __restrict__ total_tokens_post_pad,
|
||||||
int32_t* __restrict__ expert_map, int32_t num_experts,
|
int32_t* __restrict__ expert_map, int32_t num_experts,
|
||||||
int32_t padded_num_experts, int32_t experts_per_warp, int32_t block_size,
|
int32_t padded_num_experts, int32_t experts_per_warp, int32_t block_size,
|
||||||
size_t numel, int32_t* __restrict__ cumsum, int32_t max_num_tokens_padded,
|
size_t numel, int32_t* __restrict__ cumsum, int32_t max_num_tokens_padded,
|
||||||
bool has_expert_map) {
|
int32_t max_num_m_blocks, int32_t model_offset, int32_t inactive_expert_id,
|
||||||
|
int32_t topk_num, int32_t* token_mask, bool has_expert_map) {
|
||||||
extern __shared__ int32_t shared_counts[];
|
extern __shared__ int32_t shared_counts[];
|
||||||
|
|
||||||
// Use a separate threadblock to fill sorted_token_ids.
|
// Compute input buffer offsets. Typically these will all be 0, except when
|
||||||
|
// using Multi LoRA.
|
||||||
|
int sorted_token_ids_offset = max_num_tokens_padded * model_offset;
|
||||||
|
int expert_ids_offset = max_num_m_blocks * model_offset;
|
||||||
|
int cumsum_offset = (num_experts + 1) * model_offset;
|
||||||
|
|
||||||
|
// Use separate threadblocks to fill sorted_token_ids.
|
||||||
// This is safe since the current kernel does not use sorted_token_ids.
|
// This is safe since the current kernel does not use sorted_token_ids.
|
||||||
if (blockIdx.x == 1) {
|
if (blockIdx.x % 2) {
|
||||||
// Initialize sorted_token_ids with numel
|
// Initialize sorted_token_ids with numel
|
||||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded;
|
for (size_t it = threadIdx.x; it < max_num_tokens_padded;
|
||||||
it += blockDim.x) {
|
it += blockDim.x) {
|
||||||
sorted_token_ids[it] = numel;
|
sorted_token_ids[sorted_token_ids_offset + it] = numel;
|
||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -127,7 +133,9 @@ __global__ void moe_align_block_size_kernel(
|
|||||||
}
|
}
|
||||||
int warp_idx = expert_id / experts_per_warp;
|
int warp_idx = expert_id / experts_per_warp;
|
||||||
int expert_offset = expert_id % experts_per_warp;
|
int expert_offset = expert_id % experts_per_warp;
|
||||||
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset], 1);
|
int mask = token_mask == nullptr ? 1 : token_mask[i / topk_num];
|
||||||
|
atomicAdd(&shared_counts[warp_idx * experts_per_warp + expert_offset],
|
||||||
|
mask);
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
@ -148,77 +156,44 @@ __global__ void moe_align_block_size_kernel(
|
|||||||
int cumsum_val;
|
int cumsum_val;
|
||||||
BlockScan(temp_storage).ExclusiveSum(expert_count, cumsum_val);
|
BlockScan(temp_storage).ExclusiveSum(expert_count, cumsum_val);
|
||||||
if (expert_id <= num_experts) {
|
if (expert_id <= num_experts) {
|
||||||
cumsum[expert_id] = cumsum_val;
|
cumsum[cumsum_offset + expert_id] = cumsum_val;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (expert_id == num_experts) {
|
if (expert_id == num_experts) {
|
||||||
*total_tokens_post_pad = cumsum_val;
|
total_tokens_post_pad[model_offset] = cumsum_val;
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
|
|
||||||
if (threadIdx.x < num_experts) {
|
if (threadIdx.x < num_experts) {
|
||||||
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
|
for (int i = cumsum[cumsum_offset + threadIdx.x];
|
||||||
i += block_size) {
|
i < cumsum[cumsum_offset + threadIdx.x + 1]; i += block_size) {
|
||||||
expert_ids[i / block_size] = threadIdx.x;
|
expert_ids[expert_ids_offset + i / block_size] = threadIdx.x;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Fill remaining expert_ids with 0
|
// Fill remaining expert_ids with 0
|
||||||
const size_t fill_start_idx = cumsum[num_experts] / block_size + threadIdx.x;
|
const size_t fill_start_idx =
|
||||||
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
|
cumsum[cumsum_offset + num_experts] / block_size + threadIdx.x;
|
||||||
for (size_t i = fill_start_idx; i < expert_ids_size; i += blockDim.x) {
|
for (size_t i = fill_start_idx; i < max_num_m_blocks; i += blockDim.x) {
|
||||||
expert_ids[i] = 0;
|
expert_ids[expert_ids_offset + i] = inactive_expert_id;
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename scalar_t>
|
|
||||||
__global__ void count_and_sort_expert_tokens_kernel(
|
|
||||||
const scalar_t* __restrict__ topk_ids,
|
|
||||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
|
|
||||||
int32_t* __restrict__ expert_map, size_t numel, int32_t num_experts,
|
|
||||||
bool has_expert_map) {
|
|
||||||
const size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
||||||
const size_t stride = blockDim.x * gridDim.x;
|
|
||||||
|
|
||||||
for (size_t i = tid; i < numel; i += stride) {
|
|
||||||
int32_t expert_id = topk_ids[i];
|
|
||||||
if (expert_id >= num_experts) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
if (has_expert_map) {
|
|
||||||
expert_id = expert_map[expert_id];
|
|
||||||
// filter invalid experts
|
|
||||||
if (expert_id == -1) continue;
|
|
||||||
}
|
|
||||||
int32_t rank_post_pad = atomicAdd(&cumsum_buffer[expert_id], 1);
|
|
||||||
sorted_token_ids[rank_post_pad] = i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
template <typename scalar_t, int TOPK>
|
|
||||||
__global__ void moe_sum_kernel(
|
|
||||||
scalar_t* __restrict__ out, // [..., d]
|
|
||||||
const scalar_t* __restrict__ input, // [..., topk, d]
|
|
||||||
const int d) {
|
|
||||||
const int64_t token_idx = blockIdx.x;
|
|
||||||
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
|
||||||
scalar_t x = 0.0;
|
|
||||||
#pragma unroll
|
|
||||||
for (int k = 0; k < TOPK; ++k) {
|
|
||||||
x += VLLM_LDG(&input[token_idx * TOPK * d + k * d + idx]);
|
|
||||||
}
|
|
||||||
out[token_idx * d + idx] = x;
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename scalar_t, int32_t fill_threads>
|
template <typename scalar_t, int32_t fill_threads>
|
||||||
__global__ void moe_align_block_size_small_batch_expert_kernel(
|
__device__ void _moe_align_block_size_small_batch_expert(
|
||||||
const scalar_t* __restrict__ topk_ids,
|
const scalar_t* __restrict__ topk_ids,
|
||||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||||
int32_t* __restrict__ total_tokens_post_pad,
|
int32_t* __restrict__ total_tokens_post_pad,
|
||||||
int32_t* __restrict__ expert_map, int32_t num_experts, int32_t block_size,
|
int32_t* __restrict__ expert_map, int32_t num_experts, int32_t block_size,
|
||||||
size_t numel, int32_t max_num_tokens_padded, bool has_expert_map) {
|
size_t numel, int32_t max_num_tokens_padded, int32_t max_num_m_blocks,
|
||||||
|
int32_t inactive_expert_id, int32_t model_offset, int32_t topk_num,
|
||||||
|
int32_t* token_mask, bool has_expert_map) {
|
||||||
|
// Compute input buffer offsets. Typically these will all be 0, except when
|
||||||
|
// using Multi LoRA.
|
||||||
|
int sorted_token_ids_offset = max_num_tokens_padded * model_offset;
|
||||||
|
int expert_ids_offset = max_num_m_blocks * model_offset;
|
||||||
|
|
||||||
// Use an additional group of threads to fill sorted_token_ids.
|
// Use an additional group of threads to fill sorted_token_ids.
|
||||||
// Since the current kernel will use sorted_token_ids afterward,
|
// Since the current kernel will use sorted_token_ids afterward,
|
||||||
// we fill sorted_token_ids within the same threadblock to make
|
// we fill sorted_token_ids within the same threadblock to make
|
||||||
@ -227,7 +202,7 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
|||||||
// Initialize sorted_token_ids with numel
|
// Initialize sorted_token_ids with numel
|
||||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded;
|
for (size_t it = threadIdx.x; it < max_num_tokens_padded;
|
||||||
it += fill_threads) {
|
it += fill_threads) {
|
||||||
sorted_token_ids[it] = numel;
|
sorted_token_ids[sorted_token_ids_offset + it] = numel;
|
||||||
}
|
}
|
||||||
// Three __syncthreads() corresponding to the other threads
|
// Three __syncthreads() corresponding to the other threads
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
@ -254,7 +229,8 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
|||||||
// filter invalid expert
|
// filter invalid expert
|
||||||
if (expert_id == -1) continue;
|
if (expert_id == -1) continue;
|
||||||
}
|
}
|
||||||
++tokens_cnts[(tid + 1) * num_experts + expert_id];
|
int mask = token_mask == nullptr ? 1 : token_mask[i / topk_num];
|
||||||
|
tokens_cnts[(tid + 1) * num_experts + expert_id] += mask;
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
@ -277,22 +253,22 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
|||||||
CEILDIV(tokens_cnts[stride * num_experts + i - 1], block_size) *
|
CEILDIV(tokens_cnts[stride * num_experts + i - 1], block_size) *
|
||||||
block_size;
|
block_size;
|
||||||
}
|
}
|
||||||
*total_tokens_post_pad = static_cast<int32_t>(cumsum[num_experts]);
|
total_tokens_post_pad[model_offset] =
|
||||||
|
static_cast<int32_t>(cumsum[num_experts]);
|
||||||
}
|
}
|
||||||
|
|
||||||
__syncthreads();
|
__syncthreads();
|
||||||
|
|
||||||
if (tid < num_experts) {
|
if (tid < num_experts) {
|
||||||
for (int i = cumsum[tid]; i < cumsum[tid + 1]; i += block_size) {
|
for (int i = cumsum[tid]; i < cumsum[tid + 1]; i += block_size) {
|
||||||
expert_ids[i / block_size] = tid;
|
expert_ids[expert_ids_offset + i / block_size] = tid;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Fill remaining expert_ids with 0
|
// Fill remaining expert_ids with 0
|
||||||
const size_t fill_start_idx = cumsum[num_experts] / block_size + tid;
|
const size_t fill_start_idx = cumsum[num_experts] / block_size + tid;
|
||||||
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
|
for (size_t i = fill_start_idx; i < max_num_m_blocks; i += stride) {
|
||||||
for (size_t i = fill_start_idx; i < expert_ids_size; i += stride) {
|
expert_ids[expert_ids_offset + i] = inactive_expert_id;
|
||||||
expert_ids[i] = 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (size_t i = tid; i < numel; i += stride) {
|
for (size_t i = tid; i < numel; i += stride) {
|
||||||
@ -304,10 +280,194 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
|||||||
}
|
}
|
||||||
int32_t rank_post_pad =
|
int32_t rank_post_pad =
|
||||||
tokens_cnts[tid * num_experts + expert_id] + cumsum[expert_id];
|
tokens_cnts[tid * num_experts + expert_id] + cumsum[expert_id];
|
||||||
sorted_token_ids[rank_post_pad] = i;
|
|
||||||
|
if (token_mask == nullptr || token_mask[i / topk_num]) {
|
||||||
|
sorted_token_ids[sorted_token_ids_offset + rank_post_pad] = i;
|
||||||
++tokens_cnts[tid * num_experts + expert_id];
|
++tokens_cnts[tid * num_experts + expert_id];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t>
|
||||||
|
__device__ void _count_and_sort_expert_tokens(
|
||||||
|
const scalar_t* __restrict__ topk_ids,
|
||||||
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
|
||||||
|
int32_t* __restrict__ expert_map, size_t numel, int32_t num_experts,
|
||||||
|
int32_t max_num_tokens_padded, int32_t* __restrict__ token_mask,
|
||||||
|
int32_t model_offset, int32_t topk_num, bool has_expert_map) {
|
||||||
|
const size_t tid = blockIdx.y * blockDim.x + threadIdx.x;
|
||||||
|
const size_t stride = blockDim.x * gridDim.y;
|
||||||
|
|
||||||
|
for (size_t i = tid; i < numel; i += stride) {
|
||||||
|
int32_t expert_id = topk_ids[i];
|
||||||
|
if (expert_id >= num_experts) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (has_expert_map) {
|
||||||
|
expert_id = expert_map[expert_id];
|
||||||
|
// filter invalid experts
|
||||||
|
if (expert_id == -1) continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (token_mask == nullptr || token_mask[i / topk_num]) {
|
||||||
|
int32_t rank_post_pad = atomicAdd(
|
||||||
|
&cumsum_buffer[(model_offset * (num_experts + 1)) + expert_id], 1);
|
||||||
|
sorted_token_ids[max_num_tokens_padded * model_offset + rank_post_pad] =
|
||||||
|
i;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t>
|
||||||
|
__global__ void moe_align_block_size_kernel(
|
||||||
|
const scalar_t* __restrict__ topk_ids,
|
||||||
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||||
|
int32_t* __restrict__ total_tokens_post_pad,
|
||||||
|
int32_t* __restrict__ expert_map, int32_t num_experts,
|
||||||
|
int32_t padded_num_experts, int32_t experts_per_warp, int32_t block_size,
|
||||||
|
size_t numel, int32_t* __restrict__ cumsum, int32_t max_num_tokens_padded,
|
||||||
|
int32_t topk_num, bool has_expert_map) {
|
||||||
|
_moe_align_block_size(
|
||||||
|
topk_ids, sorted_token_ids, expert_ids, total_tokens_post_pad, expert_map,
|
||||||
|
num_experts, padded_num_experts, experts_per_warp, block_size, numel,
|
||||||
|
cumsum, max_num_tokens_padded, CEILDIV(max_num_tokens_padded, block_size),
|
||||||
|
0, 0, topk_num, nullptr, has_expert_map);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t>
|
||||||
|
__global__ void count_and_sort_expert_tokens_kernel(
|
||||||
|
const scalar_t* __restrict__ topk_ids,
|
||||||
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
|
||||||
|
int32_t* __restrict__ expert_map, size_t numel, int32_t num_experts,
|
||||||
|
int32_t max_num_tokens_padded, int32_t topk_num, bool has_expert_map) {
|
||||||
|
_count_and_sort_expert_tokens(
|
||||||
|
topk_ids, sorted_token_ids, cumsum_buffer, expert_map, numel, num_experts,
|
||||||
|
max_num_tokens_padded, nullptr, 0, topk_num, has_expert_map);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t, int TOPK>
|
||||||
|
__global__ void moe_sum_kernel(
|
||||||
|
scalar_t* __restrict__ out, // [..., d]
|
||||||
|
const scalar_t* __restrict__ input, // [..., topk, d]
|
||||||
|
const int d) {
|
||||||
|
const int64_t token_idx = blockIdx.x;
|
||||||
|
for (int64_t idx = threadIdx.x; idx < d; idx += blockDim.x) {
|
||||||
|
scalar_t x = 0.0;
|
||||||
|
#pragma unroll
|
||||||
|
for (int k = 0; k < TOPK; ++k) {
|
||||||
|
x += VLLM_LDG(&input[token_idx * TOPK * d + k * d + idx]);
|
||||||
|
}
|
||||||
|
out[token_idx * d + idx] = x;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t, int32_t fill_threads>
|
||||||
|
__global__ void moe_align_block_size_small_batch_expert_kernel(
|
||||||
|
const scalar_t* __restrict__ topk_ids,
|
||||||
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||||
|
int32_t* __restrict__ total_tokens_post_pad,
|
||||||
|
int32_t* __restrict__ expert_map, int32_t num_experts, int32_t block_size,
|
||||||
|
size_t numel, int32_t max_num_tokens_padded, int32_t topk_num,
|
||||||
|
bool has_expert_map) {
|
||||||
|
_moe_align_block_size_small_batch_expert<scalar_t, fill_threads>(
|
||||||
|
topk_ids, sorted_token_ids, expert_ids, total_tokens_post_pad, expert_map,
|
||||||
|
num_experts, block_size, numel, max_num_tokens_padded,
|
||||||
|
CEILDIV(max_num_tokens_padded, block_size), 0, 0, topk_num, nullptr,
|
||||||
|
has_expert_map);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t>
|
||||||
|
__global__ void moe_lora_align_block_size_kernel(
|
||||||
|
scalar_t* __restrict__ topk_ids, int32_t* __restrict__ token_lora_mapping,
|
||||||
|
int64_t block_size, int32_t* __restrict__ expert_map, int num_experts,
|
||||||
|
int max_loras, size_t numel, int max_num_tokens_padded,
|
||||||
|
int max_num_m_blocks, int32_t* __restrict__ sorted_token_ids,
|
||||||
|
int32_t* __restrict__ expert_ids, int32_t topk_num,
|
||||||
|
int32_t* total_tokens_post_pad, int32_t* adapter_enabled,
|
||||||
|
int32_t* __restrict__ cumsum, int32_t experts_per_warp,
|
||||||
|
int32_t padded_num_experts, int32_t* lora_ids,
|
||||||
|
int32_t* __restrict__ token_mask, bool has_expert_map) {
|
||||||
|
int lora_idx = blockIdx.x / 2;
|
||||||
|
int lora_id = lora_ids[lora_idx];
|
||||||
|
if (lora_id == -1 || adapter_enabled[lora_id] == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Populate the token_mask based on the token-LoRA mapping
|
||||||
|
int num_tokens = numel / topk_num;
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
total_tokens_post_pad[lora_id] = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < num_tokens; i++) {
|
||||||
|
token_mask[(lora_id * num_tokens) + i] =
|
||||||
|
(int)token_lora_mapping[i] == lora_id;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
_moe_align_block_size(
|
||||||
|
topk_ids, sorted_token_ids, expert_ids, total_tokens_post_pad, expert_map,
|
||||||
|
num_experts, padded_num_experts, experts_per_warp, block_size, numel,
|
||||||
|
cumsum, max_num_tokens_padded, max_num_m_blocks, lora_id, -1, topk_num,
|
||||||
|
&token_mask[(lora_id * num_tokens)], has_expert_map);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t>
|
||||||
|
__global__ void lora_count_and_sort_expert_tokens_kernel(
|
||||||
|
const scalar_t* __restrict__ topk_ids,
|
||||||
|
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ cumsum_buffer,
|
||||||
|
int32_t* __restrict__ expert_map, size_t numel, int32_t num_experts,
|
||||||
|
int32_t max_num_tokens_padded, int32_t topk_num, int32_t* token_mask,
|
||||||
|
int32_t* lora_ids, bool has_expert_map) {
|
||||||
|
int lora_idx = blockIdx.x;
|
||||||
|
int lora_id = lora_ids[lora_idx];
|
||||||
|
if (lora_id == -1) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int num_tokens = numel / topk_num;
|
||||||
|
|
||||||
|
_count_and_sort_expert_tokens(
|
||||||
|
topk_ids, sorted_token_ids, cumsum_buffer, expert_map, numel, num_experts,
|
||||||
|
max_num_tokens_padded, &token_mask[(lora_id * num_tokens)], lora_id,
|
||||||
|
topk_num, has_expert_map);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename scalar_t, int32_t fill_threads>
|
||||||
|
__global__ void moe_lora_align_block_size_small_batch_expert_kernel(
|
||||||
|
scalar_t* __restrict__ topk_ids, int32_t* token_lora_mapping,
|
||||||
|
int64_t block_size, int32_t* __restrict__ expert_map, int num_experts,
|
||||||
|
int max_loras, size_t numel, int max_num_tokens_padded,
|
||||||
|
int max_num_m_blocks, int32_t* __restrict__ sorted_token_ids,
|
||||||
|
int32_t* __restrict__ expert_ids, int topk_num,
|
||||||
|
int32_t* total_tokens_post_pad, int32_t* adapter_enabled, int32_t* lora_ids,
|
||||||
|
int32_t* token_mask, bool has_expert_map) {
|
||||||
|
int lora_idx = blockIdx.x;
|
||||||
|
int lora_id = lora_ids[lora_idx];
|
||||||
|
if (lora_id == -1 || adapter_enabled[lora_id] == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
int num_tokens = numel / topk_num;
|
||||||
|
if (threadIdx.x == 0) {
|
||||||
|
total_tokens_post_pad[lora_id] = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < num_tokens; i++) {
|
||||||
|
token_mask[(lora_id * num_tokens) + i] =
|
||||||
|
(int)token_lora_mapping[i] == lora_id;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
_moe_align_block_size_small_batch_expert<scalar_t, fill_threads>(
|
||||||
|
topk_ids, sorted_token_ids, expert_ids, total_tokens_post_pad, expert_map,
|
||||||
|
num_experts, block_size, numel, max_num_tokens_padded, max_num_m_blocks,
|
||||||
|
-1, lora_id, topk_num, &token_mask[(lora_id * num_tokens)],
|
||||||
|
has_expert_map);
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace moe
|
} // namespace moe
|
||||||
} // namespace vllm
|
} // namespace vllm
|
||||||
@ -365,7 +525,8 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
|||||||
experts_ids.data_ptr<int32_t>(),
|
experts_ids.data_ptr<int32_t>(),
|
||||||
num_tokens_post_pad.data_ptr<int32_t>(),
|
num_tokens_post_pad.data_ptr<int32_t>(),
|
||||||
expert_map.data_ptr<int32_t>(), num_experts, block_size,
|
expert_map.data_ptr<int32_t>(), num_experts, block_size,
|
||||||
topk_ids.numel(), sorted_token_ids.size(0), has_expert_map);
|
topk_ids.numel(), sorted_token_ids.size(0), topk_ids.size(1),
|
||||||
|
has_expert_map);
|
||||||
} else {
|
} else {
|
||||||
torch::Tensor cumsum_buffer =
|
torch::Tensor cumsum_buffer =
|
||||||
torch::empty({num_experts + 1}, options_int);
|
torch::empty({num_experts + 1}, options_int);
|
||||||
@ -386,21 +547,23 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
|||||||
expert_map.data_ptr<int32_t>(), num_experts, padded_num_experts,
|
expert_map.data_ptr<int32_t>(), num_experts, padded_num_experts,
|
||||||
experts_per_warp, block_size, topk_ids.numel(),
|
experts_per_warp, block_size, topk_ids.numel(),
|
||||||
cumsum_buffer.data_ptr<int32_t>(), sorted_token_ids.size(0),
|
cumsum_buffer.data_ptr<int32_t>(), sorted_token_ids.size(0),
|
||||||
has_expert_map);
|
topk_ids.size(1), has_expert_map);
|
||||||
|
|
||||||
const int block_threads = std::min(256, (int)threads);
|
const int block_threads = std::min(256, (int)threads);
|
||||||
const int num_blocks =
|
const int num_blocks =
|
||||||
(topk_ids.numel() + block_threads - 1) / block_threads;
|
(topk_ids.numel() + block_threads - 1) / block_threads;
|
||||||
const int max_blocks = 65535;
|
const int max_blocks = 65535;
|
||||||
const int actual_blocks = std::min(num_blocks, max_blocks);
|
const int actual_blocks = std::min(num_blocks, max_blocks);
|
||||||
|
dim3 gridDims(1, actual_blocks);
|
||||||
|
|
||||||
auto sort_kernel =
|
auto sort_kernel =
|
||||||
vllm::moe::count_and_sort_expert_tokens_kernel<scalar_t>;
|
vllm::moe::count_and_sort_expert_tokens_kernel<scalar_t>;
|
||||||
sort_kernel<<<actual_blocks, block_threads, 0, stream>>>(
|
sort_kernel<<<gridDims, block_threads, 0, stream>>>(
|
||||||
topk_ids.data_ptr<scalar_t>(),
|
topk_ids.data_ptr<scalar_t>(),
|
||||||
sorted_token_ids.data_ptr<int32_t>(),
|
sorted_token_ids.data_ptr<int32_t>(),
|
||||||
cumsum_buffer.data_ptr<int32_t>(), expert_map.data_ptr<int32_t>(),
|
cumsum_buffer.data_ptr<int32_t>(), expert_map.data_ptr<int32_t>(),
|
||||||
topk_ids.numel(), num_experts, has_expert_map);
|
topk_ids.numel(), num_experts, sorted_token_ids.size(0),
|
||||||
|
topk_ids.size(1), has_expert_map);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
@ -474,3 +637,123 @@ void moe_sum(torch::Tensor& input, // [num_tokens, topk, hidden_size]
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void moe_lora_align_block_size(
|
||||||
|
torch::Tensor topk_ids, torch::Tensor token_lora_mapping,
|
||||||
|
int64_t num_experts, int64_t block_size, int64_t max_loras,
|
||||||
|
int64_t max_num_tokens_padded, int64_t max_num_m_blocks,
|
||||||
|
torch::Tensor sorted_token_ids, torch::Tensor expert_ids,
|
||||||
|
torch::Tensor num_tokens_post_pad, torch::Tensor adapter_enabled,
|
||||||
|
torch::Tensor lora_ids, std::optional<torch::Tensor> maybe_expert_map) {
|
||||||
|
const int topk_num = topk_ids.size(1);
|
||||||
|
|
||||||
|
TORCH_CHECK(block_size > 0, "block_size should be greater than 0. ");
|
||||||
|
|
||||||
|
int device_max_shared_mem;
|
||||||
|
auto dev = topk_ids.get_device();
|
||||||
|
cudaDeviceGetAttribute(&device_max_shared_mem,
|
||||||
|
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
|
||||||
|
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||||
|
|
||||||
|
int64_t padded_num_experts =
|
||||||
|
((num_experts + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||||
|
|
||||||
|
// BlockScan uses 1024 threads and assigns one thread per expert.
|
||||||
|
TORCH_CHECK(padded_num_experts < 1024,
|
||||||
|
"padded_num_experts must be less than 1024");
|
||||||
|
|
||||||
|
auto options_int =
|
||||||
|
torch::TensorOptions().dtype(torch::kInt).device(topk_ids.device());
|
||||||
|
torch::Tensor token_mask =
|
||||||
|
torch::empty({max_loras * topk_ids.size(0)}, options_int);
|
||||||
|
bool has_expert_map = maybe_expert_map.has_value();
|
||||||
|
torch::Tensor expert_map;
|
||||||
|
if (has_expert_map) {
|
||||||
|
expert_map = maybe_expert_map.value();
|
||||||
|
} else {
|
||||||
|
expert_map = torch::empty({0}, options_int);
|
||||||
|
}
|
||||||
|
|
||||||
|
VLLM_DISPATCH_INTEGRAL_TYPES(
|
||||||
|
topk_ids.scalar_type(), "moe_lora_align_sum_kernel", [&] {
|
||||||
|
bool small_batch_expert_mode =
|
||||||
|
(topk_ids.numel() < 1024) && (num_experts <= 64);
|
||||||
|
|
||||||
|
if (small_batch_expert_mode) {
|
||||||
|
const int32_t num_thread = max((int32_t)num_experts, 128);
|
||||||
|
const int32_t shared_mem =
|
||||||
|
(num_thread + 1) * num_experts * sizeof(int32_t) +
|
||||||
|
(num_experts + 1) * sizeof(int32_t);
|
||||||
|
if (shared_mem > device_max_shared_mem) {
|
||||||
|
TORCH_CHECK(false, "Shared memory usage exceeds device limit.");
|
||||||
|
}
|
||||||
|
|
||||||
|
// threadIdx.x >= fill_threads: counting experts and aligning
|
||||||
|
// threadIdx.x < fill_threads: filling sorted_token_ids
|
||||||
|
constexpr int32_t fill_threads = 256;
|
||||||
|
|
||||||
|
dim3 blockDim(num_thread + fill_threads);
|
||||||
|
auto kernel =
|
||||||
|
vllm::moe::moe_lora_align_block_size_small_batch_expert_kernel<
|
||||||
|
scalar_t, fill_threads>;
|
||||||
|
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
|
||||||
|
(void*)kernel, shared_mem));
|
||||||
|
kernel<<<max_loras, blockDim, shared_mem, stream>>>(
|
||||||
|
topk_ids.data_ptr<scalar_t>(),
|
||||||
|
token_lora_mapping.data_ptr<int32_t>(), block_size,
|
||||||
|
expert_map.data_ptr<int32_t>(), num_experts, max_loras,
|
||||||
|
topk_ids.numel(), max_num_tokens_padded, max_num_m_blocks,
|
||||||
|
sorted_token_ids.data_ptr<int32_t>(),
|
||||||
|
expert_ids.data_ptr<int32_t>(), topk_num,
|
||||||
|
num_tokens_post_pad.data_ptr<int32_t>(),
|
||||||
|
adapter_enabled.data_ptr<int32_t>(), lora_ids.data_ptr<int32_t>(),
|
||||||
|
token_mask.data_ptr<int32_t>(), has_expert_map);
|
||||||
|
} else {
|
||||||
|
int num_thread = 1024;
|
||||||
|
dim3 blockDim(num_thread);
|
||||||
|
size_t num_warps = CEILDIV(padded_num_experts, WARP_SIZE);
|
||||||
|
|
||||||
|
size_t shared_mem_size = num_warps * WARP_SIZE * sizeof(int32_t);
|
||||||
|
|
||||||
|
// cumsum buffer
|
||||||
|
torch::Tensor cumsum =
|
||||||
|
torch::zeros({max_loras * (num_experts + 1)}, options_int);
|
||||||
|
|
||||||
|
auto align_kernel =
|
||||||
|
vllm::moe::moe_lora_align_block_size_kernel<scalar_t>;
|
||||||
|
|
||||||
|
// launch two threadblocks for each lora
|
||||||
|
// blockIdx.x % 2 == 0: counting experts and aligning
|
||||||
|
// blockIdx.x % 2 == 1: filling sorted_token_ids
|
||||||
|
align_kernel<<<max_loras * 2, blockDim, shared_mem_size, stream>>>(
|
||||||
|
topk_ids.data_ptr<scalar_t>(),
|
||||||
|
token_lora_mapping.data_ptr<int32_t>(), block_size,
|
||||||
|
expert_map.data_ptr<int32_t>(), num_experts, max_loras,
|
||||||
|
topk_ids.numel(), max_num_tokens_padded, max_num_m_blocks,
|
||||||
|
sorted_token_ids.data_ptr<int32_t>(),
|
||||||
|
expert_ids.data_ptr<int32_t>(), topk_num,
|
||||||
|
num_tokens_post_pad.data_ptr<int32_t>(),
|
||||||
|
adapter_enabled.data_ptr<int32_t>(), cumsum.data_ptr<int32_t>(),
|
||||||
|
WARP_SIZE, padded_num_experts, lora_ids.data_ptr<int32_t>(),
|
||||||
|
token_mask.data_ptr<int32_t>(), has_expert_map);
|
||||||
|
|
||||||
|
const int block_threads = std::min(256, (int)num_thread);
|
||||||
|
const int num_blocks =
|
||||||
|
(topk_ids.numel() + block_threads - 1) / block_threads;
|
||||||
|
|
||||||
|
const int max_blocks = 65535;
|
||||||
|
const int actual_blocks = std::min(num_blocks, max_blocks);
|
||||||
|
|
||||||
|
dim3 gridDims(max_loras, actual_blocks);
|
||||||
|
auto sort_kernel =
|
||||||
|
vllm::moe::lora_count_and_sort_expert_tokens_kernel<scalar_t>;
|
||||||
|
|
||||||
|
sort_kernel<<<gridDims, block_threads, 0, stream>>>(
|
||||||
|
topk_ids.data_ptr<scalar_t>(),
|
||||||
|
sorted_token_ids.data_ptr<int32_t>(), cumsum.data_ptr<int32_t>(),
|
||||||
|
expert_map.data_ptr<int32_t>(), topk_ids.numel(), num_experts,
|
||||||
|
max_num_tokens_padded, topk_num, token_mask.data_ptr<int32_t>(),
|
||||||
|
lora_ids.data_ptr<int32_t>(), has_expert_map);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
@ -1,174 +0,0 @@
|
|||||||
#include <stdio.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
#include <time.h>
|
|
||||||
#include <torch/all.h>
|
|
||||||
#include <ATen/cuda/CUDAContext.h>
|
|
||||||
#include <c10/cuda/CUDAGuard.h>
|
|
||||||
|
|
||||||
#include <ATen/ATen.h>
|
|
||||||
#include <ATen/cuda/Atomic.cuh>
|
|
||||||
|
|
||||||
#include "../cuda_compat.h"
|
|
||||||
#include "../dispatch_utils.h"
|
|
||||||
#include "core/math.hpp"
|
|
||||||
|
|
||||||
namespace {
|
|
||||||
|
|
||||||
__device__ __forceinline__ int32_t index(int32_t total_col, int32_t row,
|
|
||||||
int32_t col) {
|
|
||||||
return row * total_col + col;
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace
|
|
||||||
|
|
||||||
// TODO: Refactor common parts with moe_align_sum_kernels
|
|
||||||
template <typename scalar_t, typename token_cnts_t>
|
|
||||||
__global__ void moe_lora_align_sum_kernel(
|
|
||||||
scalar_t* __restrict__ topk_ids, int32_t* token_lora_mapping,
|
|
||||||
int64_t block_size, int num_experts, int max_loras, size_t numel,
|
|
||||||
int max_num_tokens_padded, int max_num_m_blocks,
|
|
||||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
|
||||||
int topk_num, int32_t* total_tokens_post_pad, int32_t* adapter_enabled,
|
|
||||||
int32_t* lora_ids) {
|
|
||||||
const size_t tokens_per_thread = div_ceil(numel, blockDim.x);
|
|
||||||
const size_t start_idx = threadIdx.x * tokens_per_thread;
|
|
||||||
|
|
||||||
int lora_idx = blockIdx.x;
|
|
||||||
int lora_id = lora_ids[lora_idx];
|
|
||||||
if (lora_id == -1 || adapter_enabled[lora_id] == 0) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
extern __shared__ int32_t shared_mem[];
|
|
||||||
int32_t* cumsum = shared_mem;
|
|
||||||
token_cnts_t* tokens_cnts = (token_cnts_t*)(shared_mem + num_experts + 1);
|
|
||||||
|
|
||||||
// Initialize sorted_token_ids with numel
|
|
||||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
|
|
||||||
sorted_token_ids[lora_id * max_num_tokens_padded + it] = numel;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize expert_ids with -1
|
|
||||||
for (size_t it = threadIdx.x; it < max_num_m_blocks; it += blockDim.x) {
|
|
||||||
expert_ids[lora_id * max_num_m_blocks + it] = -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Initialize total_tokens_post_pad with 0
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
total_tokens_post_pad[lora_id] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < num_experts; ++i) {
|
|
||||||
tokens_cnts[index(num_experts, threadIdx.x + 1, i)] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
|
||||||
int mask = token_lora_mapping[i / topk_num] == lora_id;
|
|
||||||
int idx = index(num_experts, threadIdx.x + 1, topk_ids[i]);
|
|
||||||
tokens_cnts[idx] += mask;
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// For each expert we accumulate the token counts from the different threads.
|
|
||||||
if (threadIdx.x < num_experts) {
|
|
||||||
tokens_cnts[index(num_experts, 0, threadIdx.x)] = 0;
|
|
||||||
for (int i = 1; i <= blockDim.x; ++i) {
|
|
||||||
tokens_cnts[index(num_experts, i, threadIdx.x)] +=
|
|
||||||
tokens_cnts[index(num_experts, i - 1, threadIdx.x)];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
// We accumulate the token counts of all experts in thread 0.
|
|
||||||
if (threadIdx.x == 0) {
|
|
||||||
cumsum[0] = 0;
|
|
||||||
for (int i = 1; i <= num_experts; ++i) {
|
|
||||||
cumsum[i] = cumsum[i - 1] +
|
|
||||||
div_ceil(tokens_cnts[index(num_experts, blockDim.x, i - 1)],
|
|
||||||
block_size) *
|
|
||||||
block_size;
|
|
||||||
}
|
|
||||||
total_tokens_post_pad[lora_id] = static_cast<int32_t>(cumsum[num_experts]);
|
|
||||||
}
|
|
||||||
|
|
||||||
__syncthreads();
|
|
||||||
|
|
||||||
/**
|
|
||||||
* For each expert, each thread processes the tokens of the corresponding
|
|
||||||
* blocks and stores the corresponding expert_id for each block.
|
|
||||||
*/
|
|
||||||
if (threadIdx.x < num_experts) {
|
|
||||||
for (int i = cumsum[threadIdx.x]; i < cumsum[threadIdx.x + 1];
|
|
||||||
i += block_size) {
|
|
||||||
expert_ids[index(max_num_m_blocks, lora_id, i / block_size)] =
|
|
||||||
threadIdx.x;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = start_idx; i < numel && i < start_idx + tokens_per_thread; ++i) {
|
|
||||||
int32_t expert_id = topk_ids[i];
|
|
||||||
/** The cumsum[expert_id] stores the starting index of the tokens that the
|
|
||||||
* expert with expert_id needs to process, and
|
|
||||||
* tokens_cnts[threadIdx.x][expert_id] stores the indices of the tokens
|
|
||||||
* processed by the expert with expert_id within the current thread's token
|
|
||||||
* shard.
|
|
||||||
*/
|
|
||||||
int32_t rank_post_pad =
|
|
||||||
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] +
|
|
||||||
cumsum[expert_id];
|
|
||||||
|
|
||||||
int mask = (int)token_lora_mapping[i / topk_num] == lora_id;
|
|
||||||
atomicAdd(
|
|
||||||
&sorted_token_ids[index(max_num_tokens_padded, lora_id, rank_post_pad)],
|
|
||||||
(i - numel) * mask);
|
|
||||||
tokens_cnts[index(num_experts, threadIdx.x, expert_id)] += mask;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void moe_lora_align_block_size(
|
|
||||||
torch::Tensor topk_ids, torch::Tensor token_lora_mapping,
|
|
||||||
int64_t num_experts, int64_t block_size, int64_t max_loras,
|
|
||||||
int64_t max_num_tokens_padded, int64_t max_num_m_blocks,
|
|
||||||
torch::Tensor sorted_token_ids, torch::Tensor expert_ids,
|
|
||||||
torch::Tensor num_tokens_post_pad, torch::Tensor adapter_enabled,
|
|
||||||
torch::Tensor lora_ids) {
|
|
||||||
const int topk_num = topk_ids.size(1);
|
|
||||||
|
|
||||||
TORCH_CHECK(block_size > 0, "block_size should be greater than 0. ");
|
|
||||||
|
|
||||||
int device_max_shared_mem;
|
|
||||||
auto dev = topk_ids.get_device();
|
|
||||||
cudaDeviceGetAttribute(&device_max_shared_mem,
|
|
||||||
cudaDevAttrMaxSharedMemoryPerBlockOptin, dev);
|
|
||||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
||||||
|
|
||||||
const int32_t num_thread = max((int32_t)num_experts, 128); // WARP_SIZE,
|
|
||||||
TORCH_CHECK(num_thread <= 1024,
|
|
||||||
"num_thread must be less than 1024, "
|
|
||||||
"and fallback is not implemented yet.");
|
|
||||||
const int32_t shared_mem = (num_thread + 1) * num_experts * sizeof(int32_t) +
|
|
||||||
(num_experts + 1) * sizeof(int32_t);
|
|
||||||
|
|
||||||
if (shared_mem > device_max_shared_mem) {
|
|
||||||
TORCH_CHECK(false,
|
|
||||||
"Shared memory usage exceeds device limit, and global memory "
|
|
||||||
"fallback is not implemented yet.");
|
|
||||||
}
|
|
||||||
|
|
||||||
VLLM_DISPATCH_INTEGRAL_TYPES(
|
|
||||||
topk_ids.scalar_type(), "moe_lora_align_sum_kernel", [&] {
|
|
||||||
dim3 blockDim(num_thread);
|
|
||||||
auto kernel = moe_lora_align_sum_kernel<scalar_t, int32_t>;
|
|
||||||
AT_CUDA_CHECK(VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(
|
|
||||||
(void*)kernel, shared_mem));
|
|
||||||
kernel<<<max_loras, blockDim, shared_mem, stream>>>(
|
|
||||||
topk_ids.data_ptr<scalar_t>(),
|
|
||||||
token_lora_mapping.data_ptr<int32_t>(), block_size, num_experts,
|
|
||||||
max_loras, topk_ids.numel(), max_num_tokens_padded,
|
|
||||||
max_num_m_blocks, sorted_token_ids.data_ptr<int32_t>(),
|
|
||||||
expert_ids.data_ptr<int32_t>(), topk_num,
|
|
||||||
num_tokens_post_pad.data_ptr<int32_t>(),
|
|
||||||
adapter_enabled.data_ptr<int32_t>(), lora_ids.data_ptr<int32_t>());
|
|
||||||
});
|
|
||||||
}
|
|
||||||
@ -27,7 +27,7 @@ void moe_lora_align_block_size(
|
|||||||
int64_t max_num_tokens_padded, int64_t max_num_m_blocks,
|
int64_t max_num_tokens_padded, int64_t max_num_m_blocks,
|
||||||
torch::Tensor sorted_token_ids, torch::Tensor expert_ids,
|
torch::Tensor sorted_token_ids, torch::Tensor expert_ids,
|
||||||
torch::Tensor num_tokens_post_pad, torch::Tensor adapter_enabled,
|
torch::Tensor num_tokens_post_pad, torch::Tensor adapter_enabled,
|
||||||
torch::Tensor lora_ids);
|
torch::Tensor lora_ids, std::optional<torch::Tensor> maybe_expert_map);
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
torch::Tensor moe_wna16_gemm(torch::Tensor input, torch::Tensor output,
|
||||||
torch::Tensor b_qweight, torch::Tensor b_scales,
|
torch::Tensor b_qweight, torch::Tensor b_scales,
|
||||||
|
|||||||
@ -47,7 +47,8 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
|||||||
" Tensor !experts_ids,"
|
" Tensor !experts_ids,"
|
||||||
" Tensor !num_tokens_post_pad,"
|
" Tensor !num_tokens_post_pad,"
|
||||||
" Tensor !adapter_enabled,"
|
" Tensor !adapter_enabled,"
|
||||||
" Tensor !lora_ids) -> () ");
|
" Tensor !lora_ids,"
|
||||||
|
" Tensor? maybe_expert_map) -> () ");
|
||||||
m.impl("moe_lora_align_block_size", torch::kCUDA, &moe_lora_align_block_size);
|
m.impl("moe_lora_align_block_size", torch::kCUDA, &moe_lora_align_block_size);
|
||||||
|
|
||||||
#ifndef USE_ROCM
|
#ifndef USE_ROCM
|
||||||
|
|||||||
@ -32,7 +32,7 @@ def sample_data(num_experts, max_loras, num_tokens, topk_num):
|
|||||||
|
|
||||||
@pytest.mark.parametrize("num_tokens", [100, 200, 1024, 4096]) # 81920
|
@pytest.mark.parametrize("num_tokens", [100, 200, 1024, 4096]) # 81920
|
||||||
@pytest.mark.parametrize("topk_num", [6])
|
@pytest.mark.parametrize("topk_num", [6])
|
||||||
@pytest.mark.parametrize("num_experts", [64, 128])
|
@pytest.mark.parametrize("num_experts", [64, 128, 256, 512])
|
||||||
@pytest.mark.parametrize("max_loras", [2, 32])
|
@pytest.mark.parametrize("max_loras", [2, 32])
|
||||||
@pytest.mark.parametrize("block_size", [16])
|
@pytest.mark.parametrize("block_size", [16])
|
||||||
def test_moe_lora_align_block_size(
|
def test_moe_lora_align_block_size(
|
||||||
|
|||||||
@ -1961,6 +1961,7 @@ def moe_lora_align_block_size(
|
|||||||
num_tokens_post_pad: torch.Tensor,
|
num_tokens_post_pad: torch.Tensor,
|
||||||
adapter_enabled: torch.Tensor,
|
adapter_enabled: torch.Tensor,
|
||||||
lora_ids: torch.Tensor,
|
lora_ids: torch.Tensor,
|
||||||
|
expert_map: torch.Tensor | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
torch.ops._moe_C.moe_lora_align_block_size(
|
torch.ops._moe_C.moe_lora_align_block_size(
|
||||||
topk_ids,
|
topk_ids,
|
||||||
@ -1975,6 +1976,7 @@ def moe_lora_align_block_size(
|
|||||||
num_tokens_post_pad,
|
num_tokens_post_pad,
|
||||||
adapter_enabled,
|
adapter_enabled,
|
||||||
lora_ids,
|
lora_ids,
|
||||||
|
expert_map,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user