mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 10:18:39 +08:00
[Misc] Move config fields to MultiModalConfig (#17343)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
This commit is contained in:
parent
cde384cd92
commit
ebb3930d28
@ -263,6 +263,10 @@ class ModelConfig:
|
||||
the model name will be the same as `model`.
|
||||
limit_mm_per_prompt: Maximum number of data items per modality
|
||||
per prompt. Only applicable for multimodal models.
|
||||
mm_processor_kwargs: Overrides for the multi-modal processor obtained
|
||||
from `AutoProcessor.from_pretrained`.
|
||||
disable_mm_preprocessor_cache: If True, disable caching of the
|
||||
processed multi-modal inputs.
|
||||
use_async_output_proc: Whether to use async output processor.
|
||||
Defaults to True.
|
||||
config_format: The config format which shall be loaded.
|
||||
@ -273,10 +277,6 @@ class ModelConfig:
|
||||
hf_overrides: If a dictionary, contains arguments to be forwarded to the
|
||||
HuggingFace config. If a callable, it is called to update the
|
||||
HuggingFace config.
|
||||
mm_processor_kwargs: Arguments to be forwarded to the model's processor
|
||||
for multi-modal data, e.g., image processor.
|
||||
disable_mm_preprocessor_cache: If true, then disables caching of the
|
||||
multi-modal preprocessor/mapper. (not recommended)
|
||||
override_neuron_config: Initialize non default neuron config or
|
||||
override default neuron config that are specific to Neuron devices,
|
||||
this argument will be used to configure the neuron config that
|
||||
@ -320,7 +320,6 @@ class ModelConfig:
|
||||
factors.append(self.max_logprobs)
|
||||
factors.append(self.disable_sliding_window)
|
||||
factors.append(self.trust_remote_code)
|
||||
factors.append(self.mm_processor_kwargs)
|
||||
factors.append(self.generation_config)
|
||||
factors.append(self.model_impl)
|
||||
factors.append(self.override_generation_config)
|
||||
@ -359,12 +358,12 @@ class ModelConfig:
|
||||
skip_tokenizer_init: bool = False,
|
||||
served_model_name: Optional[Union[str, list[str]]] = None,
|
||||
limit_mm_per_prompt: Optional[dict[str, int]] = None,
|
||||
mm_processor_kwargs: Optional[dict[str, Any]] = None,
|
||||
disable_mm_preprocessor_cache: bool = False,
|
||||
use_async_output_proc: bool = True,
|
||||
config_format: ConfigFormat = ConfigFormat.AUTO,
|
||||
hf_token: Optional[Union[bool, str]] = None,
|
||||
hf_overrides: Optional[HfOverrides] = None,
|
||||
mm_processor_kwargs: Optional[dict[str, Any]] = None,
|
||||
disable_mm_preprocessor_cache: bool = False,
|
||||
override_neuron_config: Optional[dict[str, Any]] = None,
|
||||
override_pooler_config: Optional["PoolerConfig"] = None,
|
||||
logits_processor_pattern: Optional[str] = None,
|
||||
@ -469,8 +468,6 @@ class ModelConfig:
|
||||
self.model, hf_token=hf_token, revision=revision)
|
||||
self.dtype = _get_and_verify_dtype(self.hf_config, dtype)
|
||||
self.use_async_output_proc = use_async_output_proc
|
||||
self.mm_processor_kwargs = mm_processor_kwargs
|
||||
self.disable_mm_preprocessor_cache = disable_mm_preprocessor_cache
|
||||
|
||||
# Set enforce_eager to False if the value is unset.
|
||||
if self.enforce_eager is None:
|
||||
@ -515,7 +512,10 @@ class ModelConfig:
|
||||
self.served_model_name = get_served_model_name(model,
|
||||
served_model_name)
|
||||
self.multimodal_config = self._init_multimodal_config(
|
||||
limit_mm_per_prompt)
|
||||
limit_mm_per_prompt=limit_mm_per_prompt,
|
||||
mm_processor_kwargs=mm_processor_kwargs,
|
||||
disable_mm_preprocessor_cache=disable_mm_preprocessor_cache,
|
||||
)
|
||||
if not self.skip_tokenizer_init:
|
||||
self._verify_tokenizer_mode()
|
||||
|
||||
@ -581,14 +581,27 @@ class ModelConfig:
|
||||
self.tokenizer = s3_tokenizer.dir
|
||||
|
||||
def _init_multimodal_config(
|
||||
self, limit_mm_per_prompt: Optional[dict[str, int]]
|
||||
self,
|
||||
limit_mm_per_prompt: Optional[dict[str, int]],
|
||||
mm_processor_kwargs: Optional[dict[str, Any]],
|
||||
disable_mm_preprocessor_cache: bool,
|
||||
) -> Optional["MultiModalConfig"]:
|
||||
if self.registry.is_multimodal_model(self.architectures):
|
||||
return MultiModalConfig(limit_per_prompt=limit_mm_per_prompt or {})
|
||||
return MultiModalConfig(
|
||||
limit_per_prompt=limit_mm_per_prompt or {},
|
||||
mm_processor_kwargs=mm_processor_kwargs or {},
|
||||
disable_mm_preprocessor_cache=disable_mm_preprocessor_cache,
|
||||
)
|
||||
|
||||
if limit_mm_per_prompt:
|
||||
raise ValueError("`limit_mm_per_prompt` is only supported for "
|
||||
"multimodal models.")
|
||||
if mm_processor_kwargs:
|
||||
raise ValueError("`mm_processor_kwargs` is only supported for "
|
||||
"multimodal models.")
|
||||
if disable_mm_preprocessor_cache:
|
||||
raise ValueError("`disable_mm_preprocessor_cache` is only "
|
||||
"supported for multimodal models.")
|
||||
|
||||
return None
|
||||
|
||||
@ -2776,7 +2789,23 @@ class MultiModalConfig:
|
||||
Defaults to 1 (V0) or 999 (V1) for each modality.
|
||||
|
||||
For example, to allow up to 16 images and 2 videos per prompt:
|
||||
``{"images": 16, "videos": 2}``
|
||||
:code:`{"images": 16, "videos": 2}`
|
||||
"""
|
||||
|
||||
mm_processor_kwargs: Optional[dict[str, object]] = None
|
||||
"""
|
||||
Overrides for the multi-modal processor obtained from
|
||||
:meth:`transformers.AutoProcessor.from_pretrained`.
|
||||
|
||||
The available overrides depend on the model that is being run.
|
||||
|
||||
For example, for Phi-3-Vision:
|
||||
:code:`{"num_crops": 4}`.
|
||||
"""
|
||||
|
||||
disable_mm_preprocessor_cache: bool = False
|
||||
"""
|
||||
If :code:`True`, disable caching of the processed multi-modal inputs.
|
||||
"""
|
||||
|
||||
def compute_hash(self) -> str:
|
||||
@ -4080,8 +4109,6 @@ class VllmConfig:
|
||||
f"enable_prefix_caching={self.cache_config.enable_prefix_caching}, "
|
||||
f"chunked_prefill_enabled={self.scheduler_config.chunked_prefill_enabled}, " # noqa
|
||||
f"use_async_output_proc={self.model_config.use_async_output_proc}, "
|
||||
f"disable_mm_preprocessor_cache={self.model_config.disable_mm_preprocessor_cache!r}, " # noqa
|
||||
f"mm_processor_kwargs={self.model_config.mm_processor_kwargs}, "
|
||||
f"pooler_config={self.model_config.pooler_config!r}, "
|
||||
f"compilation_config={self.compilation_config!r}")
|
||||
|
||||
|
||||
@ -672,20 +672,12 @@ class EngineArgs:
|
||||
)
|
||||
multimodal_group.add_argument('--limit-mm-per-prompt',
|
||||
**multimodal_kwargs["limit_per_prompt"])
|
||||
|
||||
parser.add_argument(
|
||||
multimodal_group.add_argument(
|
||||
'--mm-processor-kwargs',
|
||||
default=None,
|
||||
type=json.loads,
|
||||
help=('Overrides for the multi-modal processor obtained from '
|
||||
'``AutoProcessor.from_pretrained``. The available overrides '
|
||||
'depend on the model that is being run.'
|
||||
'For example, for Phi-3-Vision: ``{"num_crops": 4}``.'))
|
||||
parser.add_argument(
|
||||
**multimodal_kwargs["mm_processor_kwargs"])
|
||||
multimodal_group.add_argument(
|
||||
'--disable-mm-preprocessor-cache',
|
||||
action='store_true',
|
||||
help='If True, disable caching of the processed multi-modal '
|
||||
'inputs.')
|
||||
**multimodal_kwargs["disable_mm_preprocessor_cache"])
|
||||
|
||||
# LoRA related configs
|
||||
lora_kwargs = get_kwargs(LoRAConfig)
|
||||
|
||||
@ -101,7 +101,8 @@ class InputContext:
|
||||
Initialize a HuggingFace-like processor class, merging the
|
||||
keyword arguments with those in the model's configuration.
|
||||
"""
|
||||
base_kwargs = self.model_config.mm_processor_kwargs
|
||||
mm_config = self.model_config.get_multimodal_config()
|
||||
base_kwargs = mm_config.mm_processor_kwargs
|
||||
if base_kwargs is None:
|
||||
base_kwargs = {}
|
||||
|
||||
@ -139,7 +140,8 @@ class InputProcessingContext(InputContext):
|
||||
"""
|
||||
assert callable(hf_processor)
|
||||
|
||||
base_kwargs = self.model_config.mm_processor_kwargs
|
||||
mm_config = self.model_config.get_multimodal_config()
|
||||
base_kwargs = mm_config.mm_processor_kwargs
|
||||
if base_kwargs is None:
|
||||
base_kwargs = {}
|
||||
|
||||
|
||||
@ -774,8 +774,9 @@ class Qwen2VLProcessingInfo(BaseProcessingInfo):
|
||||
size: Optional[dict[str, int]] = None,
|
||||
**kwargs: object,
|
||||
):
|
||||
if self.ctx.model_config.mm_processor_kwargs:
|
||||
kwargs.update(self.ctx.model_config.mm_processor_kwargs)
|
||||
mm_config = self.ctx.model_config.get_multimodal_config()
|
||||
if mm_config.mm_processor_kwargs:
|
||||
kwargs.update(mm_config.mm_processor_kwargs)
|
||||
|
||||
if min_pixels is not None:
|
||||
kwargs["min_pixels"] = min_pixels
|
||||
|
||||
@ -262,7 +262,8 @@ class MultiModalRegistry:
|
||||
if tokenizer is None:
|
||||
tokenizer = cached_tokenizer_from_config(model_config)
|
||||
if disable_cache is None:
|
||||
disable_cache = model_config.disable_mm_preprocessor_cache
|
||||
mm_config = model_config.get_multimodal_config()
|
||||
disable_cache = mm_config.disable_mm_preprocessor_cache
|
||||
|
||||
model_cls = self._get_model_cls(model_config)
|
||||
factories = self._processor_factories[model_cls]
|
||||
|
||||
@ -33,7 +33,8 @@ class HashableList(list):
|
||||
|
||||
|
||||
def _merge_mm_kwargs(model_config: "ModelConfig", **kwargs):
|
||||
base_kwargs = model_config.mm_processor_kwargs
|
||||
mm_config = model_config.get_multimodal_config()
|
||||
base_kwargs = mm_config.mm_processor_kwargs
|
||||
if base_kwargs is None:
|
||||
base_kwargs = {}
|
||||
|
||||
|
||||
@ -33,7 +33,10 @@ from vllm.utils import is_list_of
|
||||
class MirroredProcessingCache:
|
||||
|
||||
def __init__(self, model_config):
|
||||
self.use_cache = not model_config.disable_mm_preprocessor_cache
|
||||
mm_config = model_config.multimodal_config
|
||||
disable_mm_preprocessor_cache = mm_config is not None and \
|
||||
not mm_config.disable_mm_preprocessor_cache
|
||||
self.use_cache = not disable_mm_preprocessor_cache
|
||||
self.mm_cache = ProcessingCache.get_lru_cache(VLLM_MM_INPUT_CACHE_GIB,
|
||||
MultiModalKwargs)
|
||||
|
||||
|
||||
@ -51,8 +51,7 @@ class Processor:
|
||||
self.mm_input_cache_client = MirroredProcessingCache(self.model_config)
|
||||
|
||||
# Multi-modal hasher (for images)
|
||||
self.use_hash = (
|
||||
not self.model_config.disable_mm_preprocessor_cache) or \
|
||||
self.use_hash = self.mm_input_cache_client.use_cache or \
|
||||
self.cache_config.enable_prefix_caching
|
||||
|
||||
def _validate_logprobs(
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user