[XPU] IPEX-optimized Punica Wrapper on XPU (#21703)

Signed-off-by: chzhang <chaojun.zhang@intel.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
Chaojun Zhang 2025-07-29 00:43:37 +08:00 committed by GitHub
parent 04fe61aa3d
commit ec261b0291
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 321 additions and 1 deletions

View File

@ -0,0 +1,7 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm.lora.ops.ipex_ops.lora_ops import (bgmv_expand, bgmv_expand_slice,
bgmv_shrink)
__all__ = ["bgmv_expand", "bgmv_expand_slice", "bgmv_shrink"]

View File

@ -0,0 +1,44 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from vllm.logger import init_logger
logger = init_logger(__name__)
try:
import intel_extension_for_pytorch as ipex
except ImportError as e:
raise e
def bgmv_shrink(inputs: torch.Tensor,
lora_a_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
scaling: float = 1.0) -> None:
ipex.llm.functional.bgmv_shrink(inputs, lora_a_weights, output_tensor,
lora_indices_tensor, scaling)
def bgmv_expand(inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
add_inputs: bool = True) -> None:
ipex.llm.functional.bgmv_expand(inputs, lora_b_weights, output_tensor,
lora_indices_tensor, add_inputs)
def bgmv_expand_slice(inputs: torch.Tensor,
lora_b_weights: torch.Tensor,
output_tensor: torch.Tensor,
lora_indices_tensor: torch.Tensor,
slice_offset: int,
slice_size: int,
add_inputs: bool = True) -> None:
ipex.llm.functional.bgmv_expand_slice(inputs, lora_b_weights,
output_tensor, lora_indices_tensor,
slice_offset, slice_size, add_inputs)

View File

@ -0,0 +1,269 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
Based on:
Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., & Krishnamurthy, A. (2023).
Punica: Multi-Tenant LoRA Serving.
https://arxiv.org/abs/2310.18547
"""
from typing import Optional, Union, final
import torch
from vllm.lora.layers import LoRAMapping
from vllm.lora.ops.ipex_ops import bgmv_expand, bgmv_expand_slice, bgmv_shrink
from .punica_base import PunicaWrapperBase
@final
class PunicaWrapperXPU(PunicaWrapperBase):
"""
PunicaWrapperXPU is designed to manage and provide metadata for the punica
kernel. The main function is to maintain the state information for
Multi-LoRA, and to provide the interface for the punica ipex kernel.
"""
def __init__(self, max_num_batched_tokens: int, max_batches: int,
device: Union[torch.device, str], **kwargs):
PunicaWrapperBase.__init__(self, max_num_batched_tokens, max_batches,
device)
torch._dynamo.mark_dynamic(self._token_lora_indices, 0)
torch._dynamo.mark_dynamic(self._embeddings_indices, 1)
torch._dynamo.mark_dynamic(self._sampler_indices_padded, 0)
def update_metadata(self, mapping: LoRAMapping,
lora_index_to_id: list[Optional[int]], max_loras: int,
vocab_size: int, extra_vocab_size: int, **kwargs):
self.is_prefill = mapping.is_prefill
self._update_base_metadata(mapping, lora_index_to_id, max_loras,
vocab_size, extra_vocab_size)
def _get_token_lora_indices(self, x: torch.Tensor) -> torch.IntTensor:
return torch.narrow(self._token_lora_indices, 0, 0, x.size(0))
def _apply_shrink(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
scale: float,
):
bgmv_shrink(x, w_t_all, y, self._get_token_lora_indices(x), scale)
def _apply_expand(
self,
y: torch.Tensor,
x: torch.Tensor,
w_t_all: torch.Tensor,
y_offset: int,
y_slice_size: int,
add_inputs: bool,
):
token_lora_indices = self._get_token_lora_indices(x)
bgmv_expand_slice(x, w_t_all, y, token_lora_indices, y_offset,
y_slice_size, add_inputs)
def add_shrink(self, y: torch.Tensor, x: torch.Tensor,
lora_a_stacked: tuple[torch.Tensor,
...], scale: float, **kwargs):
"""
Performs GEMM for multiple slices of lora_a.
Semantics:
for i in range(len(lora_a_stacked)):
y[i] += (x @ lora_a_stacked[i]) * scale
Args:
y (torch.Tensor): Output tensors
x (torch.Tensor): Input tensor
lora_a_stacked (tuple[torch.Tensor, ...]): lora_a's weights
scale (float): Scaling factor for the operation
"""
x = x.view(-1, x.shape[-1])
for slice_idx in range(len(lora_a_stacked)):
self._apply_shrink(y[slice_idx], x, lora_a_stacked[slice_idx],
scale)
def add_expand(self,
y: torch.Tensor,
x: torch.Tensor,
lora_b_stacked: tuple[torch.Tensor, ...],
lora_bias_stacked: Optional[tuple[torch.Tensor, ...]],
output_slices: tuple[int, ...],
offset_start: int = 0,
add_inputs=True,
**kwargs) -> None:
"""
Performs GEMM and bias addition for multiple slices of lora_b.
Semantics:
for i in range(len(lora_b_stacked)):
slice = output_slices[i]
y[:, offset:offset+slice] += x[i] @ lora_b_stacked[i] +
lora_bias_stacked[i]
offset += slice
Args:
y (torch.Tensor): Output tensor.
x (torch.Tensor): Input tensors
lora_b_stacked (tuple[torch.Tensor, ...]): lora_b's weight
lora_bias_stacked (Optional[tuple[torch.Tensor, ...]]):
bias's weight
output_slices (tuple[int, ...]): Every slice's size
add_inputs (bool): Defaults to True.
"""
y_org = y
y = y.view(-1, y.shape[-1])
if lora_bias_stacked is not None:
token_lora_indices = self._get_token_lora_indices(y)
self._apply_bias(token_lora_indices, y, output_slices,
lora_bias_stacked)
assert x.ndim == 3
assert x.size(0) == len(output_slices)
# TODO fuse these kernels
for slice_idx in range(len(lora_b_stacked)):
self._apply_expand(
y,
x[slice_idx],
lora_b_stacked[slice_idx],
offset_start,
output_slices[slice_idx],
add_inputs=add_inputs,
)
offset_start += output_slices[slice_idx]
y.view_as(y_org)
def add_lora_embedding(self,
y: torch.Tensor,
x: torch.Tensor,
lora_b_stacked: torch.Tensor,
add_inputs: bool = True,
**kwargs) -> None:
"""
Applies lora specifically for VocabParallelEmbeddingWithLoRA.
Semantics:
y += x @ lora_b_stacked
Args:
y (torch.Tensor): Output tensor.
x (torch.Tensor): Input tensor.
lora_b_stacked (torch.Tensor): lora_b's weights.
add_inputs (bool): Default to True.
"""
token_lora_indices = self._get_token_lora_indices(x)
bgmv_expand(x, lora_b_stacked, y, token_lora_indices, add_inputs)
def add_lora_linear(self,
y: torch.Tensor,
x: torch.Tensor,
lora_a_stacked: tuple[torch.Tensor, ...],
lora_b_stacked: tuple[torch.Tensor, ...],
lora_bias_stacked: Optional[tuple[torch.Tensor, ...]],
scale: float,
output_slices: tuple[int, ...],
*,
buffer: Optional[torch.Tensor] = None,
**kwargs) -> None:
"""
Applicable to linear-related lora.
Semantics:
for i in range(len(lora_a_stacked)):
y[i] += (
x[i].unsqueeze(0)
@ lora_a_stacked[indices[i], layer_idx, :, :]
@ lora_b_stacked[indices[i], layer_idx, :, :]
* scale
).squeeze(0)+lora_bias_stacked[i]
Args:
y (torch.Tensor): Output tensor. Will be changed in-place.
x (torch.Tensor): Input tensor
lora_a_stacked (tuple[torch.Tensor, ...]): lora_a's weight.
lora_b_stacked (tuple[torch.Tensor, ...]): lora_b's weight.
lora_bias_stacked (Optional[tuple[torch.Tensor, ...]]): lora's bias.
scale (float): Scaling factor.
output_slices (tuple[int, ...]): Every slice's size.
buffer (Optional[torch.Tensor]): Defaults to None.
"""
assert len(lora_a_stacked) == len(lora_b_stacked) == len(output_slices)
if lora_bias_stacked is not None:
assert len(lora_bias_stacked) == len(output_slices)
token_lora_indices = self._get_token_lora_indices(y)
y = self._apply_bias(token_lora_indices, y, output_slices,
lora_bias_stacked)
if buffer is None:
r = lora_b_stacked[0].size(-1)
# We set the buffer to be float32 by default, refer to:
# https://github.com/triton-lang/triton/issues/1387
buffer = torch.zeros( # type: ignore
(len(output_slices), x.size(0), r),
dtype=torch.float32,
device=x.device,
)
self.add_shrink(
buffer, # type: ignore
x,
lora_a_stacked,
scale,
**kwargs)
self.add_expand(
y,
buffer, # type: ignore
lora_b_stacked,
None,
output_slices,
add_inputs=True,
**kwargs)
def add_lora_logits(self,
y: torch.Tensor,
x: torch.Tensor,
lora_a_stacked: torch.Tensor,
lora_b_stacked: torch.Tensor,
scale,
*,
buffer: Optional[torch.Tensor] = None,
**kwargs) -> None:
"""
Applies lora specifically for LogitsProcessorWithLoRA.
Semantics:
buffer = (x @ lora_a_stacked) * scale
y += buffer @ lora_b_stacked
Args:
y (torch.Tensor): Output tensor.
x (torch.Tensor): Input tensor.
lora_a_stacked (torch.Tensor): lora_a's weights.
lora_b_stacked (torch.Tensor): lora_b's weights.
scale (float): Scaling factor.
buffer (Optional[torch.Tensor]): Default to None.
"""
y_org = y
y = y.view(-1, y.shape[-1])
x = x.view(-1, x.shape[-1])
r = lora_b_stacked.size(-1)
if buffer is None:
# We set the buffer to be float32 by default, refer to:
# https://github.com/triton-lang/triton/issues/1387
buffer = torch.zeros((x.size(0), r),
dtype=torch.float32,
device=x.device)
bgmv_shrink(x, lora_a_stacked, buffer, self.sampler_indices, scale)
bgmv_expand(buffer,
lora_b_stacked,
y,
self.sampler_indices,
add_inputs=True)
return y.view_as(y_org)

View File

@ -67,7 +67,7 @@ class XPUPlatform(Platform):
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm.lora.punica_wrapper.punica_gpu.PunicaWrapperGPU"
return "vllm.lora.punica_wrapper.punica_xpu.PunicaWrapperXPU"
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int: