mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 08:04:58 +08:00
[Model]Add Tencent HunYuanMoEV1 Model Support (#20114)
Signed-off-by: aiyiwang <aiyiwang@tencent.com> Signed-off-by: Jee Jee Li <pandaleefree@gmail.com> Co-authored-by: quinnrong <quinnrong@tencent.com> Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
This commit is contained in:
parent
ed70f3c64f
commit
ecad851cbd
@ -350,6 +350,7 @@ Specified using `--task generate`.
|
||||
| `GraniteMoeSharedForCausalLM` | Granite MoE Shared | `ibm-research/moe-7b-1b-active-shared-experts` (test model) | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `GritLM` | GritLM | `parasail-ai/GritLM-7B-vllm`. | ✅︎ | ✅︎ | |
|
||||
| `Grok1ModelForCausalLM` | Grok1 | `hpcai-tech/grok-1`. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `HunYuanMoEV1ForCausalLM` | Hunyuan-80B-A13B | `tencent/Hunyuan-A13B-Instruct`, `tencent/Hunyuan-A13B-Pretrain`, `tencent/Hunyuan-A13B-Instruct-FP8`etc. | | | ✅︎ |
|
||||
| `InternLMForCausalLM` | InternLM | `internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `InternLM2ForCausalLM` | InternLM2 | `internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `InternLM3ForCausalLM` | InternLM3 | `internlm/internlm3-8b-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
@ -387,7 +388,7 @@ Specified using `--task generate`.
|
||||
| `TeleChat2ForCausalLM` | TeleChat2 | `Tele-AI/TeleChat2-3B`, `Tele-AI/TeleChat2-7B`, `Tele-AI/TeleChat2-35B`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `TeleFLMForCausalLM` | TeleFLM | `CofeAI/FLM-2-52B-Instruct-2407`, `CofeAI/Tele-FLM`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `XverseForCausalLM` | XVERSE | `xverse/XVERSE-7B-Chat`, `xverse/XVERSE-13B-Chat`, `xverse/XVERSE-65B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
|
||||
| `MiniMaxM1ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-M1-40k`, `MiniMaxAI/MiniMax-M1-80k`etc. | | | |
|
||||
| `MiniMaxM1ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-M1-40k`, `MiniMaxAI/MiniMax-M1-80k`etc. | | | |
|
||||
| `MiniMaxText01ForCausalLM` | MiniMax-Text | `MiniMaxAI/MiniMax-Text-01`, etc. | | | |
|
||||
| `Zamba2ForCausalLM` | Zamba2 | `Zyphra/Zamba2-7B-instruct`, `Zyphra/Zamba2-2.7B-instruct`, `Zyphra/Zamba2-1.2B-instruct`, etc. | | | |
|
||||
|
||||
|
||||
@ -188,6 +188,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
|
||||
"GraniteMoeSharedForCausalLM": _HfExamplesInfo("ibm-research/moe-7b-1b-active-shared-experts"), # noqa: E501
|
||||
"Grok1ModelForCausalLM": _HfExamplesInfo("hpcai-tech/grok-1",
|
||||
trust_remote_code=True),
|
||||
"HunYuanMoEV1ForCausalLM": _HfExamplesInfo("tencent/Hunyuan-A13B-Instruct",
|
||||
trust_remote_code=True),
|
||||
"InternLMForCausalLM": _HfExamplesInfo("internlm/internlm-chat-7b",
|
||||
trust_remote_code=True),
|
||||
"InternLM2ForCausalLM": _HfExamplesInfo("internlm/internlm2-chat-7b",
|
||||
@ -490,4 +492,4 @@ class HfExampleModels:
|
||||
raise ValueError(f"No example model defined for {model_id}")
|
||||
|
||||
|
||||
HF_EXAMPLE_MODELS = HfExampleModels(_EXAMPLE_MODELS)
|
||||
HF_EXAMPLE_MODELS = HfExampleModels(_EXAMPLE_MODELS)
|
||||
@ -33,7 +33,8 @@ def test_can_initialize(model_arch: str, monkeypatch: pytest.MonkeyPatch):
|
||||
|
||||
# Ensure at least 2 expert per group
|
||||
# Since `grouped_topk` assums top-2
|
||||
num_experts = getattr(text_config, 'n_group', 1) * 2
|
||||
n_group = getattr(text_config, 'n_group', None)
|
||||
num_experts = n_group * 2 if n_group is not None else 2
|
||||
|
||||
text_config.update({
|
||||
"num_layers": 1,
|
||||
|
||||
@ -533,6 +533,41 @@ class DynamicNTKScalingRotaryEmbedding(RotaryEmbedding):
|
||||
return cache
|
||||
|
||||
|
||||
class DynamicNTKAlphaRotaryEmbedding(RotaryEmbedding):
|
||||
"""RotaryEmbedding extended with Dynamic NTK alpha.
|
||||
|
||||
Based on the original RotaryEmbedding implementation.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
head_size: int,
|
||||
rotary_dim: int,
|
||||
max_position_embeddings: int,
|
||||
base: float,
|
||||
is_neox_style: bool,
|
||||
scaling_alpha: float,
|
||||
dtype: torch.dtype,
|
||||
) -> None:
|
||||
self.scaling_alpha = scaling_alpha
|
||||
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
|
||||
is_neox_style, dtype)
|
||||
|
||||
def _compute_cos_sin_cache(self) -> torch.Tensor:
|
||||
# For Hunyuan DynamicNTKAlphaRotaryEmbedding
|
||||
max_len = self.max_position_embeddings
|
||||
base = self.base * self.scaling_alpha**(self.rotary_dim /
|
||||
(self.rotary_dim - 2))
|
||||
inv_freq = self._compute_inv_freq(base)
|
||||
t = torch.arange(max_len, dtype=torch.float)
|
||||
|
||||
freqs = torch.einsum("i,j -> ij", t, inv_freq)
|
||||
cos = freqs.cos()
|
||||
sin = freqs.sin()
|
||||
cache = torch.cat((cos, sin), dim=-1)
|
||||
return cache
|
||||
|
||||
|
||||
# Inverse dim formula to find dim based on number of rotations
|
||||
def _yarn_find_correction_dim(num_rotations: int,
|
||||
dim: int,
|
||||
@ -1929,9 +1964,15 @@ def get_rope(
|
||||
mixed_b)
|
||||
elif scaling_type == "dynamic":
|
||||
scaling_factor = rope_scaling["factor"]
|
||||
rotary_emb = DynamicNTKScalingRotaryEmbedding(
|
||||
head_size, rotary_dim, max_position, base, is_neox_style,
|
||||
scaling_factor, dtype)
|
||||
scaling_alpha = rope_scaling["alpha"]
|
||||
if scaling_alpha:
|
||||
rotary_emb = DynamicNTKAlphaRotaryEmbedding(
|
||||
head_size, rotary_dim, max_position, base, is_neox_style,
|
||||
scaling_alpha, dtype)
|
||||
else:
|
||||
rotary_emb = DynamicNTKScalingRotaryEmbedding(
|
||||
head_size, rotary_dim, max_position, base, is_neox_style,
|
||||
scaling_factor, dtype)
|
||||
elif scaling_type == "yarn":
|
||||
scaling_factor = rope_scaling["factor"]
|
||||
original_max_position = rope_scaling[
|
||||
|
||||
897
vllm/model_executor/models/hunyuan_v1_moe.py
Normal file
897
vllm/model_executor/models/hunyuan_v1_moe.py
Normal file
@ -0,0 +1,897 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HunYuan team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Inference-only HunYuan model compatible with HuggingFace weights."""
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, Optional, Union
|
||||
|
||||
import regex as re
|
||||
import torch
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
|
||||
from vllm.attention import Attention, AttentionType
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import (get_pp_group,
|
||||
get_tensor_model_parallel_world_size,
|
||||
tensor_model_parallel_all_reduce)
|
||||
from vllm.model_executor.layers.activation import SiluAndMul
|
||||
from vllm.model_executor.layers.fused_moe import FusedMoE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
||||
MergedColumnParallelLinear,
|
||||
QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig)
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.model_loader.weight_utils import (
|
||||
default_weight_loader, maybe_remap_kv_scale_name)
|
||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from .utils import PPMissingLayer, is_pp_missing_parameter, make_layers
|
||||
|
||||
|
||||
def _get_cla_factor(config: PretrainedConfig) -> int:
|
||||
if not getattr(config, "use_cla", False):
|
||||
return 1
|
||||
return getattr(config, "cla_share_factor", 1)
|
||||
|
||||
|
||||
class HunYuanMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
intermediate_size: int,
|
||||
hidden_act: str,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
prefix: str = "",
|
||||
reduce_results: bool = True,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.gate_up_proj = MergedColumnParallelLinear(
|
||||
input_size=hidden_size,
|
||||
output_sizes=[intermediate_size] * 2,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.gate_up_proj",
|
||||
)
|
||||
self.down_proj = RowParallelLinear(
|
||||
input_size=intermediate_size,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
reduce_results=reduce_results,
|
||||
)
|
||||
if hidden_act != "silu":
|
||||
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
||||
"Only silu is supported for now.")
|
||||
self.act_fn = SiluAndMul()
|
||||
|
||||
def forward(self, x):
|
||||
gate_up, _ = self.gate_up_proj(x)
|
||||
x = self.act_fn(gate_up)
|
||||
x, _ = self.down_proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class HunYuanAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
prefix: str = "",
|
||||
layer_id: int = -1,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
||||
if hasattr(config, "head_dim"):
|
||||
self.head_dim = config.head_dim
|
||||
elif hasattr(config, "attention_head_dim"):
|
||||
self.head_dim = config.attention_head_dim
|
||||
else:
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
||||
self.layer_id = layer_id
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(
|
||||
hidden_size=hidden_size,
|
||||
head_size=self.head_dim,
|
||||
total_num_heads=self.total_num_heads,
|
||||
total_num_kv_heads=self.total_num_kv_heads,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv_proj",
|
||||
)
|
||||
|
||||
self.o_proj = RowParallelLinear(
|
||||
input_size=self.total_num_heads * self.head_dim,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
is_neox_style=True,
|
||||
)
|
||||
self.attn = Attention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
)
|
||||
|
||||
if self.use_qk_norm:
|
||||
self.query_layernorm = RMSNorm(self.head_dim,
|
||||
eps=config.rms_norm_eps)
|
||||
self.key_layernorm = RMSNorm(self.head_dim,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_states: Optional[tuple[torch.Tensor]] = None,
|
||||
) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
ori_k = k
|
||||
if self.use_qk_norm:
|
||||
q = self.query_layernorm(
|
||||
q.view(-1, self.num_heads, self.head_dim).contiguous())
|
||||
k = self.key_layernorm(
|
||||
k.view(-1, self.num_kv_heads, self.head_dim).contiguous())
|
||||
|
||||
attn_output = self.attn(q, k, v)
|
||||
# For o_proj
|
||||
attn_output = attn_output.view(q.shape[0], -1)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output, (ori_k, v)
|
||||
|
||||
|
||||
class HunYuanCrossAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
bias: bool = False,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
prefix: str = "",
|
||||
layer_id: int = -1,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
|
||||
if hasattr(config, "head_dim"):
|
||||
self.head_dim = config.head_dim
|
||||
elif hasattr(config, "attention_head_dim"):
|
||||
self.head_dim = config.attention_head_dim
|
||||
else:
|
||||
self.head_dim = self.hidden_size // self.total_num_heads
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
||||
self.layer_id = layer_id
|
||||
|
||||
self.q_proj = ColumnParallelLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.q_proj",
|
||||
)
|
||||
|
||||
self.o_proj = RowParallelLinear(
|
||||
input_size=self.total_num_heads * self.head_dim,
|
||||
output_size=hidden_size,
|
||||
bias=bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
)
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
is_neox_style=True,
|
||||
)
|
||||
self.attn = Attention(
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn",
|
||||
attn_type=AttentionType.ENCODER_DECODER,
|
||||
)
|
||||
|
||||
if self.use_qk_norm:
|
||||
self.query_layernorm = RMSNorm(self.head_dim,
|
||||
eps=config.rms_norm_eps)
|
||||
self.key_layernorm = RMSNorm(self.head_dim,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_states: Optional[tuple[torch.Tensor]] = None,
|
||||
) -> torch.Tensor:
|
||||
assert kv_states is not None
|
||||
ori_k, v = kv_states # use last layer kv,
|
||||
k = ori_k
|
||||
q, _ = self.q_proj(hidden_states)
|
||||
k_tmp = torch.empty_like(k) # Todo: reduant rotary embedding
|
||||
q, _ = self.rotary_emb(positions, q, k_tmp)
|
||||
if self.use_qk_norm:
|
||||
q = self.query_layernorm(
|
||||
q.view(-1, self.num_heads, self.head_dim).contiguous())
|
||||
k = self.key_layernorm(
|
||||
k.view(-1, self.num_kv_heads, self.head_dim).contiguous())
|
||||
|
||||
attn_output = self.attn(q, k, v)
|
||||
# For o_proj
|
||||
attn_output = attn_output.view(q.shape[0], -1)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output, (ori_k, v)
|
||||
|
||||
|
||||
class HunYuanSparseMoeBlock(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
layer_id: int = -1,
|
||||
prefix: str = "",
|
||||
):
|
||||
super().__init__()
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
|
||||
if self.tp_size > config.num_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {config.num_experts}.")
|
||||
|
||||
# Get layer_id topk if config.moe_topk is a list
|
||||
if isinstance(config.moe_topk, list):
|
||||
assert layer_id >= 0
|
||||
assert len(config.moe_topk) > layer_id
|
||||
top_k = config.moe_topk[layer_id]
|
||||
else:
|
||||
top_k = config.moe_topk
|
||||
|
||||
# If it is moe, moe_intermediate_size is preferred
|
||||
intermediate_size = config.intermediate_size
|
||||
if config.moe_intermediate_size is not None:
|
||||
intermediate_size = (config.moe_intermediate_size if isinstance(
|
||||
config.moe_intermediate_size, int) else
|
||||
config.moe_intermediate_size[layer_id])
|
||||
|
||||
self.experts = FusedMoE(
|
||||
num_experts=config.num_experts,
|
||||
top_k=top_k,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=intermediate_size,
|
||||
reduce_results=False,
|
||||
renormalize=top_k > 1,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.experts",
|
||||
)
|
||||
|
||||
self.gate = ReplicatedLinear(config.hidden_size,
|
||||
config.num_experts,
|
||||
bias=False,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.gate")
|
||||
if config.use_mixed_mlp_moe > 0:
|
||||
# Get layer_id num_shared_expert if config.num_shared_expert is
|
||||
# a list.
|
||||
if isinstance(config.num_shared_expert, list):
|
||||
assert layer_id >= 0
|
||||
assert len(config.num_shared_expert) > layer_id
|
||||
num_shared_expert = config.num_shared_expert[layer_id]
|
||||
else:
|
||||
num_shared_expert = config.num_shared_expert
|
||||
|
||||
self.shared_mlp = HunYuanMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size * num_shared_expert,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
reduce_results=False,
|
||||
)
|
||||
else:
|
||||
self.shared_mlp = None
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
||||
# NOTE: hidden_states can have either 1D or 2D shape.
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_dim = hidden_states.shape[-1]
|
||||
hidden_states = hidden_states.view(-1, hidden_dim)
|
||||
shared_output = None
|
||||
if self.shared_mlp is not None:
|
||||
shared_output = self.shared_mlp(hidden_states)
|
||||
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
final_hidden_states = self.experts(hidden_states=hidden_states,
|
||||
router_logits=router_logits)
|
||||
if shared_output is not None:
|
||||
final_hidden_states = final_hidden_states + shared_output
|
||||
if self.tp_size > 1:
|
||||
final_hidden_states = tensor_model_parallel_all_reduce(
|
||||
final_hidden_states)
|
||||
|
||||
return final_hidden_states.view(orig_shape)
|
||||
|
||||
|
||||
class HunYuanDecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
layer_id: int = -1,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
assert layer_id >= 0
|
||||
self.layer_id = layer_id
|
||||
self.hidden_size = config.hidden_size
|
||||
self.intermediate_size = (config.intermediate_size if isinstance(
|
||||
config.intermediate_size, int) else
|
||||
config.intermediate_size[layer_id])
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
if rope_scaling is not None and getattr(
|
||||
config, "original_max_position_embeddings", None):
|
||||
rope_scaling["original_max_position_embeddings"] = (
|
||||
config.original_max_position_embeddings)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
attention_bias = getattr(config, "attention_bias", False) or getattr(
|
||||
config, "bias", False)
|
||||
cla_factor = _get_cla_factor(config)
|
||||
attention_type = (AttentionType.ENCODER_DECODER
|
||||
if layer_id >= 0 and layer_id % cla_factor != 0 else
|
||||
AttentionType.DECODER)
|
||||
if attention_type == AttentionType.DECODER:
|
||||
self.self_attn = HunYuanAttention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=getattr(config, "num_key_value_heads",
|
||||
config.num_attention_heads),
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=attention_bias,
|
||||
cache_config=cache_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
layer_id=layer_id,
|
||||
)
|
||||
elif attention_type == AttentionType.ENCODER_DECODER:
|
||||
self.self_attn = HunYuanCrossAttention(
|
||||
config=config,
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=getattr(config, "num_key_value_heads",
|
||||
config.num_attention_heads),
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
quant_config=quant_config,
|
||||
bias=attention_bias,
|
||||
cache_config=cache_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
layer_id=layer_id,
|
||||
)
|
||||
else:
|
||||
raise RuntimeError(f"Unsupported attention type: {attention_type}")
|
||||
|
||||
self.mlp = HunYuanSparseMoeBlock(
|
||||
config=config,
|
||||
quant_config=quant_config,
|
||||
layer_id=layer_id,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
kv_states: Optional[tuple[torch.Tensor]] = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states, ori_kv_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_states=kv_states,
|
||||
)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual, ori_kv_states
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class HunYuanModel(nn.Module):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.padding_idx = config.pad_token_id
|
||||
lora_vocab = ((lora_config.lora_extra_vocab_size *
|
||||
(lora_config.max_loras or 1)) if lora_config else 0)
|
||||
self.vocab_size = config.vocab_size + lora_vocab
|
||||
self.org_vocab_size = config.vocab_size
|
||||
if get_pp_group().is_first_rank or (config.tie_word_embeddings
|
||||
and get_pp_group().is_last_rank):
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
self.vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
else:
|
||||
self.embed_tokens = PPMissingLayer()
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: HunYuanDecoderLayer(
|
||||
config=config,
|
||||
layer_id=int(prefix.split(".")[-1]),
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=prefix,
|
||||
),
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
if get_pp_group().is_last_rank:
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
else:
|
||||
self.norm = PPMissingLayer()
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.embed_tokens(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.Tensor],
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors],
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
cla_factor = _get_cla_factor(self.config)
|
||||
prev_kv_states = None
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual, kv_states = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
residual,
|
||||
prev_kv_states,
|
||||
)
|
||||
|
||||
if (getattr(self.config, "use_cla", False)
|
||||
and (i - self.start_layer) % cla_factor == 0):
|
||||
prev_kv_states = kv_states
|
||||
else:
|
||||
prev_kv_states = None
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class HunYuanMoEV1ForCausalLM(nn.Module):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.lora_config = lora_config
|
||||
|
||||
self.model = HunYuanModel(vllm_config=vllm_config, prefix="model")
|
||||
if get_pp_group().is_last_rank:
|
||||
self.unpadded_vocab_size = config.vocab_size
|
||||
if lora_config:
|
||||
self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
|
||||
self.lm_head = ParallelLMHead(
|
||||
self.unpadded_vocab_size,
|
||||
config.hidden_size,
|
||||
org_num_embeddings=config.vocab_size,
|
||||
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
|
||||
quant_config=quant_config,
|
||||
)
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.model.embed_tokens.weight
|
||||
|
||||
logit_scale = getattr(config, "logit_scale", 1.0)
|
||||
self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
|
||||
config.vocab_size,
|
||||
logit_scale)
|
||||
self.sampler = get_sampler()
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
model_output = self.model(input_ids, positions, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
return model_output
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def sample(
|
||||
self,
|
||||
logits: torch.Tensor,
|
||||
sampling_metadata: SamplingMetadata,
|
||||
) -> Optional[SamplerOutput]:
|
||||
next_tokens = self.sampler(logits, sampling_metadata)
|
||||
return next_tokens
|
||||
|
||||
def make_empty_intermediate_tensors(
|
||||
self, batch_size: int, dtype: torch.dtype,
|
||||
device: torch.device) -> IntermediateTensors:
|
||||
return IntermediateTensors({
|
||||
"hidden_states":
|
||||
torch.zeros((batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device),
|
||||
"residual":
|
||||
torch.zeros((batch_size, self.config.hidden_size),
|
||||
dtype=dtype,
|
||||
device=device),
|
||||
})
|
||||
|
||||
def _split_qkv_weight(self, qkv: torch.Tensor):
|
||||
num_attention_heads = self.config.num_attention_heads
|
||||
num_kv_heads = getattr(self.config, "num_key_value_heads",
|
||||
self.config.num_attention_heads)
|
||||
num_key_value_groups = num_attention_heads // num_kv_heads
|
||||
hidden_size = self.config.hidden_size
|
||||
|
||||
if hasattr(self.config, "head_dim"):
|
||||
attention_head_dim = self.config.head_dim
|
||||
elif hasattr(self.config, "attention_head_dim"):
|
||||
attention_head_dim = self.config.attention_head_dim
|
||||
else:
|
||||
attention_head_dim = self.config.hidden_size // num_attention_heads
|
||||
|
||||
qkv = qkv.reshape(num_kv_heads, num_key_value_groups + 2,
|
||||
attention_head_dim, hidden_size)
|
||||
q, k, v = torch.split(qkv, (num_key_value_groups, 1, 1), dim=1)
|
||||
q = q.reshape(-1, hidden_size)
|
||||
k = k.reshape(-1, hidden_size)
|
||||
v = v.reshape(-1, hidden_size)
|
||||
return torch.concat((q, k, v))
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
||||
cla_factor = _get_cla_factor(self.config)
|
||||
stacked_params_mapping = [
|
||||
# (param_name, shard_name, shard_id)
|
||||
(".qkv_proj", ".q_proj", "q"),
|
||||
(".qkv_proj", ".k_proj", "k"),
|
||||
(".qkv_proj", ".v_proj", "v"),
|
||||
(".gate_up_proj", ".gate_proj", 0),
|
||||
(".gate_up_proj", ".up_proj", 1),
|
||||
]
|
||||
|
||||
num_attention_heads = self.config.num_attention_heads
|
||||
num_kv_heads = getattr(self.config, "num_key_value_heads",
|
||||
self.config.num_attention_heads)
|
||||
split_params_mapping = [
|
||||
(".gate_up_proj", ".gate_and_up_proj", 2, [(1, 1), (0, 1)], None),
|
||||
(
|
||||
".qkv_proj",
|
||||
".qkv_proj",
|
||||
num_attention_heads + num_kv_heads * 2,
|
||||
[("q", num_attention_heads), ("k", num_kv_heads),
|
||||
("v", num_kv_heads)],
|
||||
self._split_qkv_weight,
|
||||
),
|
||||
]
|
||||
|
||||
# Params for weights, fp8 weight scales, fp8 activation scales
|
||||
# (param_name, weight_name, expert_id, shard_id)
|
||||
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
||||
ckpt_gate_proj_name="gate_proj",
|
||||
ckpt_down_proj_name="down_proj",
|
||||
ckpt_up_proj_name="up_proj",
|
||||
num_experts=self.config.num_experts,
|
||||
)
|
||||
|
||||
params_dict = dict(self.named_parameters())
|
||||
for name, loaded_weight in weights:
|
||||
if "rotary_emb.inv_freq" in name:
|
||||
continue
|
||||
if "gate_proj_bias" in name:
|
||||
name = name.replace("gate_proj_bias", "gate_proj.bias")
|
||||
if "up_proj_bias" in name:
|
||||
name = name.replace("up_proj_bias", "up_proj.bias")
|
||||
if ("rotary_emb.cos_cached" in name
|
||||
or "rotary_emb.sin_cached" in name):
|
||||
# Models trained using ColossalAI may include these tensors in
|
||||
# the checkpoint. Skip them.
|
||||
continue
|
||||
# With tie_word_embeddings, we can skip lm_head.weight
|
||||
# The weight might appear unnecessarily in the files if the model is
|
||||
# processed with quantization, LoRA, fine-tuning, etc.
|
||||
if self.config.tie_word_embeddings and "lm_head.weight" in name:
|
||||
continue
|
||||
if self.quant_config is not None and (
|
||||
scale_name := self.quant_config.get_cache_scale(name)):
|
||||
# Loading kv cache scales for compressed-tensors quantization
|
||||
param = params_dict[scale_name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
loaded_weight = loaded_weight[0]
|
||||
weight_loader(param, loaded_weight)
|
||||
continue
|
||||
|
||||
is_found = False
|
||||
for param_name, weight_name, shard_id in stacked_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
if "mlp.experts" in name:
|
||||
continue
|
||||
# cross layer only have q_proj, skip qkv pack
|
||||
if weight_name == ".q_proj":
|
||||
match = re.search(r"layers\.\d+", name)
|
||||
if match:
|
||||
layer_id = int(match.group(0).split(".")[-1])
|
||||
if cla_factor > 1 and layer_id % cla_factor != 0:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(param, loaded_weight, shard_id)
|
||||
|
||||
is_found = True
|
||||
break
|
||||
if is_found:
|
||||
continue
|
||||
|
||||
for (
|
||||
param_name,
|
||||
weight_name,
|
||||
den,
|
||||
split_param,
|
||||
func,
|
||||
) in split_params_mapping:
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
assert loaded_weight.shape[0] % den == 0
|
||||
units = loaded_weight.shape[0] // den
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
offset = 0
|
||||
for shard_id, num in split_param:
|
||||
new_offset = offset + num * units
|
||||
if func:
|
||||
weight_loader(param,
|
||||
func(loaded_weight)[offset:new_offset],
|
||||
shard_id)
|
||||
else:
|
||||
weight_loader(param, loaded_weight[offset:new_offset],
|
||||
shard_id)
|
||||
offset = new_offset
|
||||
|
||||
break
|
||||
else:
|
||||
# Skip loading extra bias for GPTQ models.
|
||||
if name.endswith(".bias") and name not in params_dict:
|
||||
continue
|
||||
for mapping in expert_params_mapping:
|
||||
param_name, weight_name, expert_id, shard_id = mapping
|
||||
if weight_name not in name:
|
||||
continue
|
||||
name = name.replace(weight_name, param_name)
|
||||
# Skip layers on other devices.
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
param = params_dict[name]
|
||||
weight_loader = param.weight_loader
|
||||
weight_loader(
|
||||
param,
|
||||
loaded_weight,
|
||||
name,
|
||||
shard_id=shard_id,
|
||||
expert_id=expert_id,
|
||||
)
|
||||
break
|
||||
else:
|
||||
# Remapping the name of FP8 kv-scale.
|
||||
name = maybe_remap_kv_scale_name(name, params_dict)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
if is_pp_missing_parameter(name, self):
|
||||
continue
|
||||
|
||||
if "mlp.gate.wg." in name:
|
||||
name = name.replace("wg.", "")
|
||||
|
||||
param = params_dict[name]
|
||||
weight_loader = getattr(param, "weight_loader",
|
||||
default_weight_loader)
|
||||
weight_loader(param, loaded_weight)
|
||||
@ -73,6 +73,7 @@ _TEXT_GENERATION_MODELS = {
|
||||
"GraniteMoeSharedForCausalLM": ("granitemoeshared", "GraniteMoeSharedForCausalLM"), # noqa: E501
|
||||
"GritLM": ("gritlm", "GritLM"),
|
||||
"Grok1ModelForCausalLM": ("grok1", "Grok1ForCausalLM"),
|
||||
"HunYuanMoEV1ForCausalLM": ("hunyuan_v1_moe", "HunYuanMoEV1ForCausalLM"),
|
||||
"InternLMForCausalLM": ("llama", "LlamaForCausalLM"),
|
||||
"InternLM2ForCausalLM": ("internlm2", "InternLM2ForCausalLM"),
|
||||
"InternLM2VEForCausalLM": ("internlm2_ve", "InternLM2VEForCausalLM"),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user