mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 15:36:29 +08:00
[Hardware][Intel GPU] Upgrade to torch 2.7 (#17444)
Signed-off-by: Kunshang Ji <kunshang.ji@intel.com> Co-authored-by: Qiming Zhang <qiming1.zhang@intel.com>
This commit is contained in:
parent
6ed9f6047e
commit
ed6cfb90c8
@ -40,12 +40,6 @@ RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
python3 setup.py install
|
||||
|
||||
# Please refer xpu doc, we need manually install intel-extension-for-pytorch 2.6.10+xpu due to there are some conflict dependencies with torch 2.6.0+xpu
|
||||
# FIXME: This will be fix in ipex 2.7. just leave this here for awareness.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install intel-extension-for-pytorch==2.6.10+xpu \
|
||||
--extra-index-url=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
CMD ["/bin/bash"]
|
||||
|
||||
FROM vllm-base AS vllm-openai
|
||||
|
||||
@ -35,13 +35,6 @@ pip install -v -r requirements/xpu.txt
|
||||
VLLM_TARGET_DEVICE=xpu python setup.py install
|
||||
```
|
||||
|
||||
- Finally, due to a known issue of conflict dependency(oneapi related) in torch-xpu 2.6 and ipex-xpu 2.6, we install ipex here. This will be fixed in the ipex-xpu 2.7.
|
||||
|
||||
```console
|
||||
pip install intel-extension-for-pytorch==2.6.10+xpu \
|
||||
--extra-index-url=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
```
|
||||
|
||||
:::{note}
|
||||
- FP16 is the default data type in the current XPU backend. The BF16 data
|
||||
type is supported on Intel Data Center GPU, not supported on Intel Arc GPU yet.
|
||||
@ -81,5 +74,3 @@ python -m vllm.entrypoints.openai.api_server \
|
||||
```
|
||||
|
||||
By default, a ray instance will be launched automatically if no existing one is detected in the system, with `num-gpus` equals to `parallel_config.world_size`. We recommend properly starting a ray cluster before execution, referring to the <gh-file:examples/online_serving/run_cluster.sh> helper script.
|
||||
|
||||
There are some new features coming with ipex-xpu 2.6, e.g. **chunked prefill**, **V1 engine support**, **lora**, **MoE**, etc.
|
||||
|
||||
@ -10,7 +10,7 @@ wheel
|
||||
jinja2>=3.1.6
|
||||
datasets # for benchmark scripts
|
||||
|
||||
torch==2.6.0+xpu
|
||||
torch==2.7.0+xpu
|
||||
torchaudio
|
||||
torchvision
|
||||
pytorch-triton-xpu
|
||||
@ -18,6 +18,6 @@ pytorch-triton-xpu
|
||||
|
||||
# Please refer xpu doc, we need manually install intel-extension-for-pytorch 2.6.10+xpu due to there are some conflict dependencies with torch 2.6.0+xpu
|
||||
# FIXME: This will be fix in ipex 2.7. just leave this here for awareness.
|
||||
# intel-extension-for-pytorch==2.6.10+xpu
|
||||
oneccl_bind_pt==2.6.0+xpu
|
||||
intel-extension-for-pytorch==2.7.10+xpu
|
||||
oneccl_bind_pt==2.7.0+xpu
|
||||
--extra-index-url=https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
|
||||
|
||||
@ -177,6 +177,7 @@ class ipex_ops:
|
||||
out: torch.Tensor,
|
||||
seqlen_q: torch.Tensor,
|
||||
seqlen_k: torch.Tensor,
|
||||
alibi_slopes: torch.Tensor,
|
||||
max_seqlen_q: int,
|
||||
max_seqlen_k: int,
|
||||
pdropout: float,
|
||||
@ -185,6 +186,8 @@ class ipex_ops:
|
||||
is_causal: bool,
|
||||
return_softmax: bool,
|
||||
gen_: torch.Generator,
|
||||
window_size_left: float,
|
||||
window_size_right: float,
|
||||
logits_soft_cap: float,
|
||||
) -> None:
|
||||
if ipex.__version__.endswith("cpu"):
|
||||
@ -200,15 +203,12 @@ class ipex_ops:
|
||||
is_causal, return_softmax,
|
||||
gen_)
|
||||
else: # XPU build
|
||||
ipex.llm.functional.varlen_attention(query.contiguous(),
|
||||
key.contiguous(),
|
||||
value.contiguous(), out,
|
||||
seqlen_q.int(),
|
||||
seqlen_k.int(), max_seqlen_q,
|
||||
max_seqlen_k, pdropout,
|
||||
softmax_scale, zero_tensors,
|
||||
is_causal, return_softmax,
|
||||
gen_, logits_soft_cap)
|
||||
ipex.llm.functional.varlen_attention(
|
||||
query.contiguous(), key.contiguous(), value.contiguous(), out,
|
||||
seqlen_q.int(), seqlen_k.int(), alibi_slopes, max_seqlen_q,
|
||||
max_seqlen_k, pdropout, softmax_scale, zero_tensors, is_causal,
|
||||
return_softmax, gen_, window_size_left, window_size_right,
|
||||
logits_soft_cap)
|
||||
|
||||
@staticmethod
|
||||
def reshape_and_cache(
|
||||
|
||||
@ -143,10 +143,9 @@ class IpexAttnBackendImpl(AttentionImpl[IpexAttnMetadata]):
|
||||
|
||||
assert self.num_heads % self.num_kv_heads == 0
|
||||
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
||||
self.need_mask = (self.alibi_slopes is not None
|
||||
or self.sliding_window is not None)
|
||||
self.need_mask = (self.sliding_window is not None)
|
||||
if logits_soft_cap is None:
|
||||
logits_soft_cap = 0
|
||||
logits_soft_cap = -1
|
||||
self.logits_soft_cap = logits_soft_cap
|
||||
|
||||
supported_head_sizes = PagedAttention.get_supported_head_sizes()
|
||||
@ -234,11 +233,7 @@ class IpexAttnBackendImpl(AttentionImpl[IpexAttnMetadata]):
|
||||
dim=1)
|
||||
|
||||
if attn_metadata.attn_bias is None:
|
||||
if self.alibi_slopes is not None:
|
||||
att_masks = _make_alibi_bias(
|
||||
self.alibi_slopes, query.dtype,
|
||||
attn_metadata.seq_lens) # type: ignore
|
||||
elif self.sliding_window is not None:
|
||||
if self.sliding_window is not None:
|
||||
att_masks = _make_sliding_window_bias(
|
||||
attn_metadata.seq_lens, self.sliding_window,
|
||||
query.dtype) # type: ignore
|
||||
@ -258,6 +253,7 @@ class IpexAttnBackendImpl(AttentionImpl[IpexAttnMetadata]):
|
||||
output,
|
||||
attn_metadata.seqlen_q,
|
||||
attn_metadata.seqlen_q,
|
||||
self.alibi_slopes,
|
||||
attn_metadata.max_seqlen,
|
||||
attn_metadata.max_seqlen,
|
||||
pdropout=0.0,
|
||||
@ -266,6 +262,8 @@ class IpexAttnBackendImpl(AttentionImpl[IpexAttnMetadata]):
|
||||
is_causal=True,
|
||||
return_softmax=False,
|
||||
gen_=None,
|
||||
window_size_left=-1,
|
||||
window_size_right=-1,
|
||||
logits_soft_cap=self.logits_soft_cap,
|
||||
)
|
||||
else:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user