[FEAT] [ROCm]: AITER Fused MOE V1 Support (#16752)

Signed-off-by: vllmellm <vllm.ellm@embeddedllm.com>
Co-authored-by: tjtanaa <tunjian.tan@embeddedllm.com>
This commit is contained in:
vllmellm 2025-04-25 11:06:50 +08:00 committed by GitHub
parent 0d6e187e88
commit eef364723c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 302 additions and 130 deletions

View File

@ -11,6 +11,8 @@ from vllm.model_executor.layers.fused_moe.fused_moe import (
dispatch_fused_experts_func, dispatch_topk_func,
torch_vllm_inplace_fused_experts, torch_vllm_outplace_fused_experts,
vllm_topk_softmax)
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
is_rocm_aiter_moe_enabled)
from vllm.model_executor.layers.layernorm import (
RMSNorm, dispatch_cuda_rmsnorm_func, fused_add_rms_norm, rms_norm,
rocm_aiter_fused_add_rms_norm, rocm_aiter_rms_norm)
@ -100,11 +102,10 @@ def test_enabled_ops_invalid(env: str):
def test_topk_dispatch(use_rocm_aiter: str, monkeypatch):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", use_rocm_aiter)
topk_func = dispatch_topk_func()
is_rocm_aiter_moe_enabled.cache_clear()
if current_platform.is_rocm() and int(use_rocm_aiter):
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
rocm_aiter_topk_softmax)
assert topk_func == rocm_aiter_topk_softmax
else:
assert topk_func == vllm_topk_softmax
@ -116,11 +117,11 @@ def test_fused_experts_dispatch(use_rocm_aiter: str, inplace: bool,
monkeypatch):
monkeypatch.setenv("VLLM_ROCM_USE_AITER", use_rocm_aiter)
is_rocm_aiter_moe_enabled.cache_clear()
fused_experts_func = dispatch_fused_experts_func(inplace)
if current_platform.is_rocm() and int(use_rocm_aiter):
from vllm.model_executor.layers.fused_moe.rocm_aiter_fused_moe import (
rocm_aiter_fused_experts)
assert fused_experts_func == rocm_aiter_fused_experts
elif inplace:
assert fused_experts_func == torch_vllm_inplace_fused_experts

View File

@ -1,31 +1,35 @@
# SPDX-License-Identifier: Apache-2.0
from typing import List, Optional
from functools import cache
from typing import List, Optional, Tuple
import torch
import vllm.envs as envs
from vllm import envs
from vllm.platforms import current_platform
from vllm.utils import direct_register_custom_op
@cache
def is_rocm_aiter_moe_enabled() -> bool:
return current_platform.is_rocm() \
and envs.VLLM_ROCM_USE_AITER_MOE \
and envs.VLLM_ROCM_USE_AITER
def rocm_aiter_asm_moe_tkw1(hidden_states,
w1,
w2,
topk_weight,
topk_ids,
fc1_scale=None,
fc2_scale=None,
fc1_smooth_scale=None,
fc2_smooth_scale=None,
a16=False,
per_tensor_quant_scale=None,
expert_mask=None,
activation_str: str = "silu") -> None:
def rocm_aiter_asm_moe_tkw1_impl(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weight: torch.Tensor,
topk_ids: torch.Tensor,
fc1_scale: Optional[torch.Tensor] = None,
fc2_scale: Optional[torch.Tensor] = None,
fc1_smooth_scale: Optional[torch.Tensor] = None,
fc2_smooth_scale: Optional[torch.Tensor] = None,
a16: bool = False,
per_tensor_quant_scale: Optional[torch.Tensor] = None,
expert_mask: Optional[torch.Tensor] = None,
activation_str: str = "silu") -> torch.Tensor:
from aiter import ActivationType
from aiter.fused_moe_bf16_asm import asm_moe_tkw1
@ -48,34 +52,236 @@ def rocm_aiter_asm_moe_tkw1(hidden_states,
activation=activation)
def rocm_aiter_fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
allow_deep_gemm: bool = False,
) -> torch.Tensor:
def rocm_aiter_asm_moe_tkw1_fake(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weight: torch.Tensor,
topk_ids: torch.Tensor,
fc1_scale: Optional[torch.Tensor] = None,
fc2_scale: Optional[torch.Tensor] = None,
fc1_smooth_scale: Optional[torch.Tensor] = None,
fc2_smooth_scale: Optional[torch.Tensor] = None,
a16: bool = False,
per_tensor_quant_scale: Optional[torch.Tensor] = None,
expert_mask: Optional[torch.Tensor] = None,
activation_str: str = "silu") -> torch.Tensor:
return torch.empty_like(hidden_states)
import aiter as rocm_aiter
def rocm_aiter_ck_moe_impl(hidden_states: torch.Tensor, w1: torch.Tensor,
w2: torch.Tensor, topk_weights: torch.Tensor,
topk_ids: torch.Tensor) -> torch.Tensor:
from aiter import ck_moe
return ck_moe(hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids)
def rocm_aiter_ck_moe_fake(hidden_states: torch.Tensor, w1: torch.Tensor,
w2: torch.Tensor, topk_weights: torch.Tensor,
topk_ids: torch.Tensor) -> torch.Tensor:
return torch.empty_like(hidden_states)
def rocm_aiter_fmoe_fp8_blockscale_g1u1_impl(
topk_ids: torch.Tensor,
topk_weights: torch.Tensor,
hidden_states_dtype: torch.dtype,
expert_mask: torch.Tensor,
a1: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a1_scale: torch.Tensor,
block_shape: List[int],
smooth_scale: Optional[torch.Tensor] = None) -> torch.Tensor:
from aiter import fmoe_fp8_blockscale_g1u1
from aiter.fused_moe_bf16_asm import moe_sorting_ck
topk = topk_ids.shape[1]
model_dim = w1.shape[-1]
local_E = E = w1.shape[0]
if expert_mask is not None:
E = expert_mask.numel()
(
sorted_token_ids,
sorted_weight_buf,
sorted_expert_ids,
num_valid_ids,
out_asm,
) = moe_sorting_ck(topk_ids,
topk_weights,
E,
model_dim,
hidden_states_dtype,
expert_mask=expert_mask)
fmoe_fp8_blockscale_g1u1(out_asm, a1, w1, w2, sorted_token_ids,
sorted_weight_buf, sorted_expert_ids,
num_valid_ids, topk, w1_scale.view(local_E, -1),
w2_scale.view(local_E, -1),
a1_scale.t().contiguous(), *block_shape,
smooth_scale)
return out_asm
def rocm_aiter_fmoe_fp8_blockscale_g1u1_fake(
topk_ids: torch.Tensor,
topk_weights: torch.Tensor,
hidden_states_dtype: torch.dtype,
expert_mask: torch.Tensor,
a1: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
w1_scale: torch.Tensor,
w2_scale: torch.Tensor,
a1_scale: torch.Tensor,
block_shape: List[int],
smooth_scale: Optional[torch.Tensor] = None) -> torch.Tensor:
return torch.empty_like(a1, dtype=torch.bf16)
def rocm_aiter_asm_moe_impl(hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weight: torch.Tensor,
topk_ids: torch.Tensor,
fc1_scale: Optional[torch.Tensor] = None,
fc2_scale: Optional[torch.Tensor] = None,
fc1_smooth_scale: Optional[torch.Tensor] = None,
fc2_smooth_scale: Optional[torch.Tensor] = None,
a16: bool = False,
activation: str = "silu") -> torch.Tensor:
import aiter.fused_moe_bf16_asm as rocm_aiter_asm_fmoe
from aiter import ActivationType
assert activation in ["silu", "gelu"], "The given activation:" \
f" {activation}" \
" is not supported in" \
" AITER."
if activation == "silu":
aiter_activation = ActivationType.Silu
else:
aiter_activation = ActivationType.Gelu
return rocm_aiter_asm_fmoe.asm_moe(hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weight=topk_weight,
topk_ids=topk_ids,
fc1_scale=fc1_scale,
fc2_scale=fc2_scale,
fc1_smooth_scale=fc1_smooth_scale,
fc2_smooth_scale=fc2_smooth_scale,
a16=a16,
activation=aiter_activation)
def rocm_aiter_asm_moe_fake(hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weight: torch.Tensor,
topk_ids: torch.Tensor,
fc1_scale: Optional[torch.Tensor] = None,
fc2_scale: Optional[torch.Tensor] = None,
fc1_smooth_scale: Optional[torch.Tensor] = None,
fc2_smooth_scale: Optional[torch.Tensor] = None,
a16: bool = False,
activation: str = "silu") -> torch.Tensor:
return torch.empty_like(hidden_states)
def rocm_aiter_topk_softmax_impl(topk_weights: torch.Tensor,
topk_indices: torch.Tensor,
token_expert_indices: torch.Tensor,
gating_output: torch.Tensor,
renormalize: bool) -> None:
from aiter import topk_softmax
topk_softmax(topk_weights, topk_indices, token_expert_indices,
gating_output, renormalize)
def rocm_aiter_topk_softmax_fake(topk_weights: torch.Tensor,
topk_indices: torch.Tensor,
token_expert_indices: torch.Tensor,
gating_output: torch.Tensor,
renormalize: bool) -> None:
pass
if current_platform.is_rocm():
direct_register_custom_op(
op_name="rocm_aiter_asm_moe_tkw1",
op_func=rocm_aiter_asm_moe_tkw1_impl,
mutates_args=[],
fake_impl=rocm_aiter_asm_moe_tkw1_fake,
dispatch_key=current_platform.dispatch_key,
)
direct_register_custom_op(
op_name="rocm_aiter_ck_moe",
op_func=rocm_aiter_ck_moe_impl,
mutates_args=[],
fake_impl=rocm_aiter_ck_moe_fake,
dispatch_key=current_platform.dispatch_key,
)
direct_register_custom_op(
op_name="rocm_aiter_fmoe_fp8_blockscale_g1u1",
op_func=rocm_aiter_fmoe_fp8_blockscale_g1u1_impl,
mutates_args=[],
fake_impl=rocm_aiter_fmoe_fp8_blockscale_g1u1_fake,
dispatch_key=current_platform.dispatch_key,
)
direct_register_custom_op(
op_name="rocm_aiter_asm_moe",
op_func=rocm_aiter_asm_moe_impl,
mutates_args=[],
fake_impl=rocm_aiter_asm_moe_fake,
dispatch_key=current_platform.dispatch_key,
)
direct_register_custom_op(
op_name="rocm_aiter_topk_softmax",
op_func=rocm_aiter_topk_softmax_impl,
mutates_args=["topk_weights", "topk_indices", "token_expert_indices"],
fake_impl=rocm_aiter_topk_softmax_fake,
dispatch_key=current_platform.dispatch_key,
)
def rocm_aiter_fused_experts(hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
inplace: bool = False,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
use_fp8_w8a8: bool = False,
use_int8_w8a8: bool = False,
use_int8_w8a16: bool = False,
use_int4_w4a16: bool = False,
per_channel_quant: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
w1_scale: Optional[torch.Tensor] = None,
w2_scale: Optional[torch.Tensor] = None,
w1_zp: Optional[torch.Tensor] = None,
w2_zp: Optional[torch.Tensor] = None,
a1_scale: Optional[torch.Tensor] = None,
a2_scale: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
allow_deep_gemm: bool = False) -> torch.Tensor:
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8)
@ -84,60 +290,24 @@ def rocm_aiter_fused_experts(
topk_weights = topk_weights.to(torch.float32)
topk_ids = topk_ids.to(torch.int32)
if (block_shape is not None) and use_fp8_w8a8:
# w8a8 block-scaled
if block_shape is not None and use_fp8_w8a8:
assert not apply_router_weight_on_input, (
"apply_router_weight_on_input is not supported for block scaled moe"
)
assert w1_scale is not None
assert w2_scale is not None
local_E = E = w1.shape[0]
if expert_map is not None:
E = expert_map.numel()
topk = topk_ids.shape[1]
model_dim = w1.shape[-1]
dtype = hidden_states.dtype
# The default block sizes are 128 in AITER.
if block_shape is None:
block_shape = [128, 128]
block_shape = [128, 128] if block_shape is None else block_shape
scale_blk_k = block_shape[1]
a1, a1_scale = per_token_group_quant_fp8(hidden_states, block_shape[1])
(
sorted_token_ids,
sorted_weight_buf,
sorted_expert_ids,
num_valid_ids,
out_asm,
) = rocm_aiter_asm_fmoe.moe_sorting_ck(topk_ids,
topk_weights,
E,
model_dim,
dtype,
expert_mask=expert_map)
a1, a1_scale = per_token_group_quant_fp8(hidden_states, scale_blk_k)
rocm_aiter.fmoe_fp8_blockscale_g1u1(
out_asm,
a1,
w1,
w2,
sorted_token_ids,
sorted_weight_buf,
sorted_expert_ids,
num_valid_ids,
topk,
w1_scale.view(local_E, -1),
w2_scale.view(local_E, -1),
a1_scale.t().contiguous(),
block_shape[0],
block_shape[1],
None,
)
return out_asm
return torch.ops.vllm.rocm_aiter_fmoe_fp8_blockscale_g1u1(
topk_ids, topk_weights, hidden_states.dtype, expert_map, a1, w1,
w2, w1_scale, w2_scale, a1_scale, block_shape, None)
# w8a8 per-channel quantization
elif per_channel_quant and apply_router_weight_on_input and use_fp8_w8a8:
# AITER tkw1 kernel for FP8 models with `apply_router_weight_on_input`
# This applies topk_weights on the GEMM output of the first FC layer
@ -148,34 +318,36 @@ def rocm_aiter_fused_experts(
"Only support topk=1 when"
" `apply_router_weight_on_input` is True")
return rocm_aiter_asm_moe_tkw1(hidden_states,
w1,
w2,
topk_weights,
topk_ids,
fc1_scale=w1_scale,
fc2_scale=w2_scale,
fc1_smooth_scale=None,
fc2_smooth_scale=None,
a16=False,
per_tensor_quant_scale=None,
expert_mask=expert_map,
activation_str=activation)
return torch.ops.vllm.rocm_aiter_asm_moe_tkw1(
hidden_states,
w1,
w2,
topk_weights,
topk_ids,
fc1_scale=w1_scale,
fc2_scale=w2_scale,
fc1_smooth_scale=None,
fc2_smooth_scale=None,
a16=False,
per_tensor_quant_scale=None,
expert_mask=expert_map,
activation_str=activation)
# w8a8 per-tensor activation per-tensor weight
elif use_fp8_w8a8:
assert not apply_router_weight_on_input, (
"apply_router_weight_on_input is not supported for fp8_w8a8")
return rocm_aiter_asm_fmoe.asm_moe(hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weight=topk_weights,
topk_ids=topk_ids,
fc1_scale=w1_scale,
fc2_scale=w2_scale,
fc1_smooth_scale=None,
fc2_smooth_scale=None,
a16=False)
return torch.ops.vllm.rocm_aiter_asm_moe(hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weight=topk_weights,
topk_ids=topk_ids,
fc1_scale=w1_scale,
fc2_scale=w2_scale,
fc1_smooth_scale=None,
fc2_smooth_scale=None,
a16=False,
activation=activation)
if apply_router_weight_on_input:
assert (topk_weights.dim() == 2
), "`topk_weights` should be in shape (num_tokens, topk)"
@ -188,26 +360,26 @@ def rocm_aiter_fused_experts(
topk_ids = topk_ids.to(torch.int32)
topk_weights = torch.ones_like(topk_weights, dtype=torch.float32)
return rocm_aiter.ck_moe(hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids)
# w16a16 fallback to rocm_aiter_ck_moe w16a16
return torch.ops.vllm.rocm_aiter_ck_moe(hidden_states=hidden_states,
w1=w1,
w2=w2,
topk_weights=topk_weights,
topk_ids=topk_ids)
def rocm_aiter_topk_softmax(topk_weights: torch.Tensor,
topk_indices: torch.Tensor,
token_expert_indices: torch.Tensor,
gating_output: torch.Tensor,
renormalize: bool) -> tuple[torch.Tensor, ...]:
import aiter as rocm_aiter
rocm_aiter.topk_softmax(topk_weights, topk_indices, token_expert_indices,
gating_output, renormalize)
renormalize: bool) -> Tuple[torch.Tensor, ...]:
torch.ops.vllm.rocm_aiter_topk_softmax(topk_weights, topk_indices,
token_expert_indices, gating_output,
renormalize)
return topk_weights, topk_indices
def shuffle_weights(*tensors: torch.Tensor) -> tuple[torch.Tensor, ...]:
def shuffle_weights(*tensors: torch.Tensor) -> Tuple[torch.Tensor, ...]:
"""
Applies shuffle_weight function from AITER to each
input tensor and returns them.
@ -216,15 +388,14 @@ def shuffle_weights(*tensors: torch.Tensor) -> tuple[torch.Tensor, ...]:
*tensors: Variable number of torch.Tensor objects.
Returns:
A tuple of shuffled tensors.
A Tuple of shuffled tensors.
"""
from aiter.ops.shuffle import shuffle_weight
return tuple(shuffle_weight(tensor) for tensor in tensors)
def expand_weights(*tensors: torch.Tensor,
expansion_dims: list[int]) -> tuple[torch.Tensor, ...]:
expansion_dims: list[int]) -> Tuple[torch.Tensor, ...]:
"""
Expands the dimensions of input tensors.
@ -234,7 +405,7 @@ def expand_weights(*tensors: torch.Tensor,
corresponding to each tensor.
Returns:
A tuple of tensors with expanded dimensions.
A Tuple of tensors with expanded dimensions.
"""
assert len(tensors) == len(expansion_dims), \

View File

@ -304,9 +304,9 @@ class CompressedTensorsW8A8Fp8MoEMethod(CompressedTensorsMoEMethod):
e_score_correction_bias=e_score_correction_bias)
return self.fused_experts_func(
x,
layer.w13_weight,
layer.w2_weight,
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,