[MISC] Use non-blocking transfer in prepare_input (#7172)

This commit is contained in:
Cody Yu 2024-08-05 16:41:27 -07:00 committed by GitHub
parent 89b8db6bb2
commit ef527be06c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 43 additions and 49 deletions

View File

@ -13,7 +13,7 @@ from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping,
compute_slot_mapping_start_idx,
is_block_tables_empty)
from vllm.utils import make_tensor_with_pad
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
if TYPE_CHECKING:
from vllm.worker.model_runner import ModelInputForGPUBuilder
@ -310,7 +310,8 @@ class FlashAttentionMetadataBuilder(
for i, block_table in enumerate(self.block_tables):
if block_table:
input_block_tables[i, :len(block_table)] = block_table
block_tables = torch.tensor(input_block_tables, device=device)
block_tables = torch.from_numpy(input_block_tables).to(
device=device, non_blocking=True)
else:
block_tables = make_tensor_with_pad(
self.block_tables,
@ -320,15 +321,15 @@ class FlashAttentionMetadataBuilder(
)
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
context_lens_tensor = torch.tensor(self.context_lens,
dtype=torch.int,
device=device)
seq_lens_tensor = torch.tensor(seq_lens,
dtype=torch.int,
device=device)
query_lens_tensor = torch.tensor(query_lens,
dtype=torch.long,
device=device)
assert device is not None
context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
device, self.runner.pin_memory)
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
self.runner.pin_memory)
query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
self.runner.pin_memory)
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
device, self.runner.pin_memory)
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
dtype=torch.int32,
device=device)
@ -344,10 +345,6 @@ class FlashAttentionMetadataBuilder(
dtype=query_start_loc.dtype,
out=query_start_loc[1:])
slot_mapping_tensor = torch.tensor(self.slot_mapping,
dtype=torch.long,
device=device)
return FlashAttentionMetadata(
num_prefills=self.num_prefills,
slot_mapping=slot_mapping_tensor,

View File

@ -21,7 +21,8 @@ from vllm.attention.backends.utils import (PAD_SLOT_ID, compute_slot_mapping,
compute_slot_mapping_start_idx,
is_block_tables_empty)
from vllm.attention.ops.paged_attn import PagedAttention
from vllm.utils import get_kv_cache_torch_dtype, make_tensor_with_pad
from vllm.utils import (async_tensor_h2d, get_kv_cache_torch_dtype,
make_tensor_with_pad)
if TYPE_CHECKING:
from vllm.worker.model_runner import ModelInputForGPUBuilder
@ -356,7 +357,8 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
for i, block_table in enumerate(self.block_tables):
if block_table:
input_block_tables[i, :len(block_table)] = block_table
block_tables = torch.tensor(input_block_tables, device=device)
block_tables = torch.from_numpy(input_block_tables).to(
device, non_blocking=True)
last_paged_kv_indptr = self.paged_kv_indptr[-1]
self.paged_kv_indptr.extend([last_paged_kv_indptr] *
@ -371,12 +373,13 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
)
assert max_query_len > 0, ("query_lens: {}".format(query_lens))
seq_lens_tensor = torch.tensor(seq_lens,
dtype=torch.int,
device=device)
query_lens_tensor = torch.tensor(query_lens,
dtype=torch.long,
device=device)
assert device is not None
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
self.runner.pin_memory)
query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
self.runner.pin_memory)
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
device, self.runner.pin_memory)
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
dtype=torch.int32,
device=device)
@ -392,10 +395,6 @@ class FlashInferMetadataBuilder(AttentionMetadataBuilder[FlashInferMetadata]):
dtype=query_start_loc.dtype,
out=query_start_loc[1:])
slot_mapping_tensor = torch.tensor(self.slot_mapping,
dtype=torch.long,
device=device)
if len(self.paged_kv_indptr) > 0:
paged_kv_indices_tensor = torch.tensor(self.paged_kv_indices,
device="cpu",

View File

@ -4,7 +4,7 @@ from typing import TYPE_CHECKING, Dict, List, Type, TypeVar, Union
import torch
from vllm.attention import AttentionMetadata, AttentionMetadataBuilder
from vllm.utils import make_tensor_with_pad
from vllm.utils import async_tensor_h2d, make_tensor_with_pad
# Error string(s) for encoder/decoder
# unsupported attention scenarios
@ -181,7 +181,8 @@ class CommonMetadataBuilder(AttentionMetadataBuilder[TAttentionMetadata]):
for i, block_table in enumerate(self.block_tables):
if block_table:
input_block_tables[i, :len(block_table)] = block_table
block_tables = torch.tensor(input_block_tables, device=device)
block_tables = torch.from_numpy(input_block_tables).to(
device, non_blocking=True)
else:
block_tables = make_tensor_with_pad(
self.block_tables,
@ -191,15 +192,15 @@ class CommonMetadataBuilder(AttentionMetadataBuilder[TAttentionMetadata]):
)
assert max_query_len > 0, "query_lens: {}".format(query_lens)
context_lens_tensor = torch.tensor(self.context_lens,
dtype=torch.int,
device=device)
seq_lens_tensor = torch.tensor(seq_lens,
dtype=torch.int,
device=device)
query_lens_tensor = torch.tensor(query_lens,
dtype=torch.long,
device=device)
assert device is not None
context_lens_tensor = async_tensor_h2d(self.context_lens, torch.int,
device, self.runner.pin_memory)
seq_lens_tensor = async_tensor_h2d(seq_lens, torch.int, device,
self.runner.pin_memory)
query_lens_tensor = async_tensor_h2d(query_lens, torch.long, device,
self.runner.pin_memory)
slot_mapping_tensor = async_tensor_h2d(self.slot_mapping, torch.long,
device, self.runner.pin_memory)
query_start_loc = torch.zeros(query_lens_tensor.shape[0] + 1,
dtype=torch.int32,
device=device)
@ -215,10 +216,6 @@ class CommonMetadataBuilder(AttentionMetadataBuilder[TAttentionMetadata]):
dtype=query_start_loc.dtype,
out=query_start_loc[1:])
slot_mapping_tensor = torch.tensor(self.slot_mapping,
dtype=torch.long,
device=device)
return self._metadata_cls( # type: ignore
num_prefills=self.num_prefills,
slot_mapping=slot_mapping_tensor,

View File

@ -50,7 +50,7 @@ from vllm.prompt_adapter.worker_manager import (
from vllm.sampling_params import SamplingParams
from vllm.sequence import (IntermediateTensors, SamplerOutput,
SequenceGroupMetadata)
from vllm.utils import (CudaMemoryProfiler, flatten_2d_lists,
from vllm.utils import (CudaMemoryProfiler, async_tensor_h2d, flatten_2d_lists,
get_kv_cache_torch_dtype, is_hip,
is_pin_memory_available)
from vllm.worker.model_runner_base import (
@ -549,12 +549,13 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
# Tokens and positions.
input_tokens.extend([0] * cuda_graph_pad_size)
input_positions.extend([0] * cuda_graph_pad_size)
input_tokens_tensor = torch.tensor(input_tokens,
dtype=torch.long,
device=self.runner.device)
input_positions_tensor = torch.tensor(input_positions,
dtype=torch.long,
device=self.runner.device)
assert self.runner.device is not None
input_tokens_tensor = async_tensor_h2d(input_tokens, torch.long,
self.runner.device,
self.runner.pin_memory)
input_positions_tensor = async_tensor_h2d(input_positions, torch.long,
self.runner.device,
self.runner.pin_memory)
# Sequence and query lengths.
seq_lens.extend([1] * cuda_graph_pad_size)