[Model] Add Phi-2 LoRA support (#4886)

This commit is contained in:
Isotr0py 2024-05-21 13:24:17 +08:00 committed by GitHub
parent d130b573a0
commit f12c3b5b3d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 99 additions and 6 deletions

View File

@ -118,7 +118,7 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`PhiForCausalLM`
- Phi
- :code:`microsoft/phi-1_5`, :code:`microsoft/phi-2`, etc.
-
- ✅︎
* - :code:`Phi3ForCausalLM`
- Phi-3
- :code:`microsoft/Phi-3-mini-4k-instruct`, :code:`microsoft/Phi-3-mini-128k-instruct`, etc.

View File

@ -165,6 +165,11 @@ def tinyllama_lora_files():
return snapshot_download(repo_id="jashing/tinyllama-colorist-lora")
@pytest.fixture(scope="session")
def phi2_lora_files():
return snapshot_download(repo_id="isotr0py/phi-2-test-sql-lora")
@pytest.fixture(scope="session")
def long_context_lora_files_16k_1():
return snapshot_download(repo_id="SangBinCho/long_context_16k_testing_1")

67
tests/lora/test_phi.py Normal file
View File

@ -0,0 +1,67 @@
import vllm
from vllm.lora.request import LoRARequest
MODEL_PATH = "microsoft/phi-2"
PROMPT_TEMPLATE = "### Instruct: {sql_prompt}\n\n### Context: {context}\n\n### Output:" # noqa: E501
def do_sample(llm, lora_path: str, lora_id: int) -> str:
prompts = [
PROMPT_TEMPLATE.format(
sql_prompt=
"Which catalog publisher has published the most catalogs?",
context="CREATE TABLE catalogs (catalog_publisher VARCHAR);"),
PROMPT_TEMPLATE.format(
sql_prompt=
"Which trip started from the station with the largest dock count? Give me the trip id.", # noqa: E501
context=
"CREATE TABLE trip (id VARCHAR, start_station_id VARCHAR); CREATE TABLE station (id VARCHAR, dock_count VARCHAR);" # noqa: E501
),
PROMPT_TEMPLATE.format(
sql_prompt=
"How many marine species are found in the Southern Ocean?", # noqa: E501
context=
"CREATE TABLE marine_species (name VARCHAR(50), common_name VARCHAR(50), location VARCHAR(50));" # noqa: E501
),
]
sampling_params = vllm.SamplingParams(temperature=0,
max_tokens=64,
stop="### End")
outputs = llm.generate(
prompts,
sampling_params,
lora_request=LoRARequest(str(lora_id), lora_id, lora_path)
if lora_id else None,
)
# Print the outputs.
generated_texts = []
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text.strip()
generated_texts.append(generated_text)
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
return generated_texts
def test_phi2_lora(phi2_lora_files):
# We enable enforce_eager=True here to reduce VRAM usage for lora-test CI,
# Otherwise, the lora-test will fail due to CUDA OOM.
llm = vllm.LLM(MODEL_PATH,
max_model_len=1024,
enable_lora=True,
max_loras=2,
enforce_eager=True)
expected_lora_output = [
"SELECT catalog_publisher, COUNT(*) as num_catalogs FROM catalogs GROUP BY catalog_publisher ORDER BY num_catalogs DESC LIMIT 1;", # noqa: E501
"SELECT trip.id FROM trip JOIN station ON trip.start_station_id = station.id WHERE station.dock_count = (SELECT MAX(dock_count) FROM station);", # noqa: E501
"SELECT COUNT(*) FROM marine_species WHERE location = 'Southern Ocean';", # noqa: E501
]
output1 = do_sample(llm, phi2_lora_files, lora_id=1)
for i in range(len(expected_lora_output)):
assert output1[i].startswith(expected_lora_output[i])
output2 = do_sample(llm, phi2_lora_files, lora_id=2)
for i in range(len(expected_lora_output)):
assert output2[i].startswith(expected_lora_output[i])

View File

@ -42,7 +42,7 @@ from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig
from vllm.config import CacheConfig, LoRAConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import get_act_fn
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
@ -229,11 +229,32 @@ class PhiModel(nn.Module):
class PhiForCausalLM(nn.Module):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
]
}
def __init__(self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None):
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"dense",
"fc1",
"fc2",
]
embedding_modules = {}
embedding_padding_modules = []
def __init__(
self,
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
):
del lora_config # Unused.
super().__init__()
self.config = config
self.quant_config = quant_config