diff --git a/tests/models/registry.py b/tests/models/registry.py index 82253a1c94b39..17dc901e28cab 100644 --- a/tests/models/registry.py +++ b/tests/models/registry.py @@ -267,6 +267,7 @@ _EMBEDDING_EXAMPLE_MODELS = { # [Text-only] "BertModel": _HfExamplesInfo("BAAI/bge-base-en-v1.5", v0_only=True), "Gemma2Model": _HfExamplesInfo("BAAI/bge-multilingual-gemma2", v0_only=True), # noqa: E501 + "GPT2ForSequenceClassification": _HfExamplesInfo("nie3e/sentiment-polish-gpt2-small"), # noqa: E501 "GritLM": _HfExamplesInfo("parasail-ai/GritLM-7B-vllm"), "GteModel": _HfExamplesInfo("Snowflake/snowflake-arctic-embed-m-v2.0", trust_remote_code=True), diff --git a/vllm/model_executor/models/gpt2.py b/vllm/model_executor/models/gpt2.py index fd3decbaebec4..27021550f9987 100644 --- a/vllm/model_executor/models/gpt2.py +++ b/vllm/model_executor/models/gpt2.py @@ -40,9 +40,11 @@ from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import default_weight_loader +from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata -from vllm.sequence import IntermediateTensors +from vllm.sequence import IntermediateTensors, PoolerOutput +from ..layers.pooler import Pooler, PoolingType from .interfaces import SupportsPP from .utils import (AutoWeightsLoader, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, @@ -318,6 +320,58 @@ class GPT2LMHeadModel(nn.Module, SupportsPP): return loader.load_weights(weights) +class GPT2ForSequenceClassification(nn.Module): + """GPT2 Model for sequence classification. + + This class expands GPT2Model with pooling and score functions - last token + is being used for classification. + + Attributes: + transformer: An instance of GPT2Model used for forward operations. + score: A layer for calculating logits. + _pooler: An instance of Pooler used for pooling operations. + """ + + def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): + super().__init__() + config = vllm_config.model_config.hf_config + self.transformer = GPT2Model(vllm_config=vllm_config, + prefix=maybe_prefix(prefix, "gpt2")) + self.score = nn.Linear(config.n_embd, config.num_labels, bias=False) + pooler_config = vllm_config.model_config.pooler_config + self._pooler = Pooler.from_config_with_defaults( + pooler_config, + pooling_type=PoolingType.LAST, + normalize=False, + softmax=True) + + def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]): + loader = AutoWeightsLoader(self) + return loader.load_weights(weights) + + def pooler( + self, + hidden_states: torch.Tensor, + pooling_metadata: PoolingMetadata, + ) -> Optional[PoolerOutput]: + return self._pooler(hidden_states, pooling_metadata) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + intermediate_tensors: Optional[IntermediateTensors] = None, + inputs_embeds: Optional[torch.Tensor] = None, + ) -> torch.Tensor: + hidden_states = self.transformer( + input_ids=input_ids, + position_ids=positions, + inputs_embeds=inputs_embeds, + intermediate_tensors=intermediate_tensors) + logits = self.score(hidden_states) + return logits + + def _add_transformer_prefix( weights: Iterable[tuple[str, torch.Tensor]] ) -> Iterable[tuple[str, torch.Tensor]]: diff --git a/vllm/model_executor/models/registry.py b/vllm/model_executor/models/registry.py index 83f7cc6eee0fd..95cb25e8f3c95 100644 --- a/vllm/model_executor/models/registry.py +++ b/vllm/model_executor/models/registry.py @@ -130,6 +130,7 @@ _EMBEDDING_MODELS = { "DeciLMForCausalLM": ("nemotron_nas", "DeciLMForCausalLM"), "Gemma2Model": ("gemma2", "Gemma2ForCausalLM"), "GlmForCausalLM": ("glm", "GlmForCausalLM"), + "GPT2ForSequenceClassification": ("gpt2", "GPT2ForSequenceClassification"), "GritLM": ("gritlm", "GritLM"), "GteModel": ("bert_with_rope", "SnowflakeGteNewModel"), "GteNewModel": ("bert_with_rope", "GteNewModel"),