Benchmark script for fp8 vs bf16 gemm (#17126)

Signed-off-by: mgoin <mgoin64@gmail.com>
This commit is contained in:
Michael Goin 2025-05-30 12:56:11 -04:00 committed by GitHub
parent 2dbe8c0774
commit f49239cb45
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 268 additions and 0 deletions

View File

@ -0,0 +1,222 @@
# SPDX-License-Identifier: Apache-2.0
import argparse
import copy
import itertools
import torch
import triton
from weight_shapes import WEIGHT_SHAPES
from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm
from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size"],
x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384],
x_log=False,
line_arg="provider",
line_vals=[
"torch-bf16",
# "fp8-tensor-w-token-a",
"fp8-tensor-w-tensor-a",
"fp8-channel-w-token-a",
# "fp8-channel-w-tensor-a",
# "fp8-tensor-w-token-a-noquant",
"fp8-tensor-w-tensor-a-noquant",
"fp8-channel-w-token-a-noquant",
# "fp8-channel-w-tensor-a-noquant",
],
line_names=[
"torch-bf16",
# "fp8-tensor-w-token-a",
"fp8-tensor-w-tensor-a",
"fp8-channel-w-token-a",
# "fp8-channel-w-tensor-a",
# "fp8-tensor-w-token-a-noquant",
"fp8-tensor-w-tensor-a-noquant",
"fp8-channel-w-token-a-noquant",
# "fp8-channel-w-tensor-a-noquant",
],
ylabel="TFLOP/s (larger is better)",
plot_name="BF16 vs FP8 GEMMs",
args={},
)
)
def benchmark(batch_size, provider, N, K):
M = batch_size
device = "cuda"
dtype = torch.bfloat16
# Create input tensors
a = torch.randn((M, K), device=device, dtype=dtype)
b = torch.randn((N, K), device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if "torch-bf16" in provider:
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: torch.nn.functional.linear(a, b), quantiles=quantiles
)
elif "fp8" in provider:
# Weights are always quantized ahead of time
if "noquant" in provider:
# For no quantization, we just measure the GEMM
if "tensor-w-token-a" in provider:
# Dynamic per-token quant for A, per-tensor quant for B
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b)
assert scale_b_fp8.numel() == 1
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "tensor-w-tensor-a" in provider:
# Static per-tensor quantization with fixed scales
# for both A and B
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor([1.0], device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
assert scale_b_fp8.numel() == 1
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-token-a" in provider:
# Static per-channel quantization for weights, per-token
# quant for A
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-tensor-a" in provider:
# Static per-channel quantization for weights, per-tensor
# quant for A
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
def run_quant():
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
else:
# In these cases, we quantize the activations during the GEMM call
if "tensor-w-token-a" in provider:
# Dynamic per-token quant for A, per-tensor quant for B
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b)
assert scale_b_fp8.numel() == 1
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "tensor-w-tensor-a" in provider:
# Static per-tensor quantization with fixed scales
# for both A and B
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor([1.0], device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
assert scale_b_fp8.numel() == 1
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-token-a" in provider:
# Static per-channel quantization for weights, per-token
# quant for A
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(
a, use_per_token_if_dynamic=True
)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
elif "channel-w-tensor-a" in provider:
# Static per-channel quantization for weights, per-tensor
# quant for A
scale_a = torch.tensor([1.0], device=device, dtype=torch.float32)
scale_b = torch.tensor((N,), device=device, dtype=torch.float32)
b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b)
scale_b_fp8 = scale_b_fp8.expand(N).contiguous()
assert scale_b_fp8.numel() == N
def run_quant():
a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a)
return vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype)
b_fp8 = b_fp8.t()
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(
lambda: run_quant(), quantiles=quantiles
)
# Calculate TFLOP/s, two flops per multiply-add
tflops = lambda ms: (2 * M * N * K) * 1e-12 / (ms * 1e-3)
return tflops(ms), tflops(max_ms), tflops(min_ms)
def prepare_shapes(args):
KN_model_names = []
models_tps = list(itertools.product(args.models, args.tp_sizes))
for model, tp_size in models_tps:
assert model in WEIGHT_SHAPES
for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]):
KN[tp_split_dim] = KN[tp_split_dim] // tp_size
KN.append(model)
KN_model_names.append(KN)
return KN_model_names
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--models",
nargs="+",
type=str,
default=["meta-llama/Llama-3.1-8B-Instruct"],
choices=[*WEIGHT_SHAPES.keys()],
help="List of models to benchmark",
)
parser.add_argument(
"--tp-sizes",
nargs="+",
type=int,
default=[1],
help="List of tensor parallel sizes",
)
args = parser.parse_args()
KN_model_names = prepare_shapes(args)
for K, N, model_name in KN_model_names:
print(f"{model_name}, N={N} K={K}, BF16 vs FP8 GEMMs TFLOP/s:")
benchmark.run(
print_data=True,
show_plots=True,
save_path=f"bench_fp8_res_n{N}_k{K}",
N=N,
K=K,
)
print("Benchmark finished!")

View File

@ -48,4 +48,50 @@ WEIGHT_SHAPES = {
([16384, 106496], 1),
([53248, 16384], 0),
],
"meta-llama/Llama-3.1-8B-Instruct": [
([4096, 6144], 1),
([4096, 4096], 0),
([4096, 28672], 1),
([14336, 4096], 0),
],
"meta-llama/Llama-3.3-70B-Instruct": [
([8192, 10240], 1),
([8192, 8192], 0),
([8192, 57344], 1),
([28672, 8192], 0),
],
"mistralai/Mistral-Large-Instruct-2407": [
([12288, 14336], 1),
([12288, 12288], 0),
([12288, 57344], 1),
([28672, 12288], 0),
],
"Qwen/Qwen2.5-7B-Instruct": [
([3584, 4608], 1),
([3584, 3584], 0),
([3584, 37888], 1),
([18944, 3584], 0),
],
"Qwen/Qwen2.5-32B-Instruct": [
([5120, 7168], 1),
([5120, 5120], 0),
([5120, 55296], 1),
([27648, 5120], 0),
],
"Qwen/Qwen2.5-72B-Instruct": [
([8192, 10240], 1),
([8192, 8192], 0),
([8192, 59136], 1),
([29568, 8192], 0),
],
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [
([2048, 3072], 1),
([2048, 4096], 1),
([2048, 2048], 0),
([2048, 576], 0),
([2048, 21888], 1),
([10944, 2048], 0),
([2048, 2816], 1),
([1408, 2048], 0),
],
}