mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 01:55:01 +08:00
[ci][test] add correctness test for cpu offloading (#6549)
This commit is contained in:
parent
2d4733ba2d
commit
f53b8f0d05
@ -46,6 +46,7 @@ steps:
|
||||
commands:
|
||||
- pip install https://github.com/flashinfer-ai/flashinfer/releases/download/v0.0.8/flashinfer-0.0.8+cu121torch2.3-cp310-cp310-linux_x86_64.whl
|
||||
- pytest -v -s basic_correctness/test_basic_correctness.py
|
||||
- pytest -v -s basic_correctness/test_cpu_offload.py
|
||||
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
|
||||
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
|
||||
|
||||
8
tests/basic_correctness/test_cpu_offload.py
Normal file
8
tests/basic_correctness/test_cpu_offload.py
Normal file
@ -0,0 +1,8 @@
|
||||
from ..utils import compare_two_settings
|
||||
|
||||
|
||||
def test_cpu_offload():
|
||||
compare_two_settings("meta-llama/Llama-2-7b-hf", [],
|
||||
["--cpu-offload-gb", "4"])
|
||||
compare_two_settings("nm-testing/llama7b-one-shot-2_4-w4a16-marlin24-t",
|
||||
[], ["--cpu-offload-gb", "1"])
|
||||
@ -1,7 +1,6 @@
|
||||
import pytest
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from ..utils import RemoteOpenAIServer
|
||||
from ..utils import compare_two_settings
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
@ -13,7 +12,6 @@ from ..utils import RemoteOpenAIServer
|
||||
(1, 4, 1, 0, "meta-llama/Meta-Llama-3-8B"),
|
||||
])
|
||||
def test_compare_tp(TP_SIZE, PP_SIZE, EAGER_MODE, CHUNKED_PREFILL, MODEL_NAME):
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
||||
|
||||
pp_args = [
|
||||
# use half precision for speed and memory savings in CI environment
|
||||
@ -48,85 +46,4 @@ def test_compare_tp(TP_SIZE, PP_SIZE, EAGER_MODE, CHUNKED_PREFILL, MODEL_NAME):
|
||||
pp_args.append("--enforce-eager")
|
||||
tp_args.append("--enforce-eager")
|
||||
|
||||
prompt = "Hello, my name is"
|
||||
token_ids = tokenizer(prompt)["input_ids"]
|
||||
results = []
|
||||
for args in (pp_args, tp_args):
|
||||
with RemoteOpenAIServer(MODEL_NAME, args) as server:
|
||||
client = server.get_client()
|
||||
|
||||
# test models list
|
||||
models = client.models.list()
|
||||
models = models.data
|
||||
served_model = models[0]
|
||||
results.append({
|
||||
"test": "models_list",
|
||||
"id": served_model.id,
|
||||
"root": served_model.root,
|
||||
})
|
||||
|
||||
# test with text prompt
|
||||
completion = client.completions.create(model=MODEL_NAME,
|
||||
prompt=prompt,
|
||||
max_tokens=5,
|
||||
temperature=0.0)
|
||||
|
||||
results.append({
|
||||
"test": "single_completion",
|
||||
"text": completion.choices[0].text,
|
||||
"finish_reason": completion.choices[0].finish_reason,
|
||||
"usage": completion.usage,
|
||||
})
|
||||
|
||||
# test using token IDs
|
||||
completion = client.completions.create(
|
||||
model=MODEL_NAME,
|
||||
prompt=token_ids,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
results.append({
|
||||
"test": "token_ids",
|
||||
"text": completion.choices[0].text,
|
||||
"finish_reason": completion.choices[0].finish_reason,
|
||||
"usage": completion.usage,
|
||||
})
|
||||
|
||||
# test simple list
|
||||
batch = client.completions.create(
|
||||
model=MODEL_NAME,
|
||||
prompt=[prompt, prompt],
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
results.append({
|
||||
"test": "simple_list",
|
||||
"text0": batch.choices[0].text,
|
||||
"text1": batch.choices[1].text,
|
||||
})
|
||||
|
||||
# test streaming
|
||||
batch = client.completions.create(
|
||||
model=MODEL_NAME,
|
||||
prompt=[prompt, prompt],
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
stream=True,
|
||||
)
|
||||
texts = [""] * 2
|
||||
for chunk in batch:
|
||||
assert len(chunk.choices) == 1
|
||||
choice = chunk.choices[0]
|
||||
texts[choice.index] += choice.text
|
||||
results.append({
|
||||
"test": "streaming",
|
||||
"texts": texts,
|
||||
})
|
||||
|
||||
n = len(results) // 2
|
||||
pp_results = results[:n]
|
||||
tp_results = results[n:]
|
||||
for pp, tp in zip(pp_results, tp_results):
|
||||
assert pp == tp
|
||||
compare_two_settings(MODEL_NAME, pp_args, tp_args)
|
||||
|
||||
@ -10,6 +10,7 @@ from typing import Any, Dict, List
|
||||
import openai
|
||||
import ray
|
||||
import requests
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from vllm.distributed import (ensure_model_parallel_initialized,
|
||||
init_distributed_environment)
|
||||
@ -124,6 +125,99 @@ class RemoteOpenAIServer:
|
||||
)
|
||||
|
||||
|
||||
def compare_two_settings(model: str, arg1: List[str], arg2: List[str]):
|
||||
"""
|
||||
Launch API server with two different sets of arguments and compare the
|
||||
results of the API calls. The arguments are after the model name.
|
||||
"""
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model)
|
||||
|
||||
prompt = "Hello, my name is"
|
||||
token_ids = tokenizer(prompt)["input_ids"]
|
||||
results = []
|
||||
for args in (arg1, arg2):
|
||||
with RemoteOpenAIServer(model, args) as server:
|
||||
client = server.get_client()
|
||||
|
||||
# test models list
|
||||
models = client.models.list()
|
||||
models = models.data
|
||||
served_model = models[0]
|
||||
results.append({
|
||||
"test": "models_list",
|
||||
"id": served_model.id,
|
||||
"root": served_model.root,
|
||||
})
|
||||
|
||||
# test with text prompt
|
||||
completion = client.completions.create(model=model,
|
||||
prompt=prompt,
|
||||
max_tokens=5,
|
||||
temperature=0.0)
|
||||
|
||||
results.append({
|
||||
"test": "single_completion",
|
||||
"text": completion.choices[0].text,
|
||||
"finish_reason": completion.choices[0].finish_reason,
|
||||
"usage": completion.usage,
|
||||
})
|
||||
|
||||
# test using token IDs
|
||||
completion = client.completions.create(
|
||||
model=model,
|
||||
prompt=token_ids,
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
results.append({
|
||||
"test": "token_ids",
|
||||
"text": completion.choices[0].text,
|
||||
"finish_reason": completion.choices[0].finish_reason,
|
||||
"usage": completion.usage,
|
||||
})
|
||||
|
||||
# test simple list
|
||||
batch = client.completions.create(
|
||||
model=model,
|
||||
prompt=[prompt, prompt],
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
)
|
||||
|
||||
results.append({
|
||||
"test": "simple_list",
|
||||
"text0": batch.choices[0].text,
|
||||
"text1": batch.choices[1].text,
|
||||
})
|
||||
|
||||
# test streaming
|
||||
batch = client.completions.create(
|
||||
model=model,
|
||||
prompt=[prompt, prompt],
|
||||
max_tokens=5,
|
||||
temperature=0.0,
|
||||
stream=True,
|
||||
)
|
||||
texts = [""] * 2
|
||||
for chunk in batch:
|
||||
assert len(chunk.choices) == 1
|
||||
choice = chunk.choices[0]
|
||||
texts[choice.index] += choice.text
|
||||
results.append({
|
||||
"test": "streaming",
|
||||
"texts": texts,
|
||||
})
|
||||
|
||||
n = len(results) // 2
|
||||
arg1_results = results[:n]
|
||||
arg2_results = results[n:]
|
||||
for arg1_result, arg2_result in zip(arg1_results, arg2_results):
|
||||
assert arg1_result == arg2_result, \
|
||||
f"Results for {model=} are not the same with {arg1=} and {arg2=}"
|
||||
|
||||
|
||||
def init_test_distributed_environment(
|
||||
tp_size: int,
|
||||
pp_size: int,
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user