[Bugfix] Schedule failure due to wrong get_image_size_with_most_features (#29692)

This commit is contained in:
Jaehwang Jung 2025-12-12 19:27:20 +09:00 committed by GitHub
parent 302b2c1eb9
commit f90319d5d1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 117 additions and 9 deletions

View File

@ -0,0 +1,42 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from vllm.multimodal import MULTIMODAL_REGISTRY
from ....conftest import ImageTestAssets
from ...utils import build_model_context
@pytest.mark.parametrize("model_id", ["google/gemma-3-4b-it"])
def test_get_image_size_with_most_features(
image_assets: ImageTestAssets, model_id: str
):
ctx = build_model_context(
model_id,
mm_processor_kwargs={"do_pan_and_scan": True},
limit_mm_per_prompt={"image": 1},
)
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
hf_processor_mm_kwargs: dict[str, object] = {}
hf_processor = processor.info.get_hf_processor(**hf_processor_mm_kwargs)
max_image_size = processor.info.get_image_size_with_most_features()
max_tokens = processor.info.get_num_image_tokens(
image_width=max_image_size.width,
image_height=max_image_size.height,
processor=hf_processor,
)
prompt = "<start_of_image>"
image_seq_length = hf_processor.image_seq_length
for asset in image_assets:
mm_data = {"image": [asset.pil_image]}
processed_inputs = processor.apply(prompt, mm_data, hf_processor_mm_kwargs)
mm_kwargs_data = processed_inputs["mm_kwargs"].get_data()
num_patches_tensor = mm_kwargs_data["num_patches"]
tokens = int(num_patches_tensor.item()) * image_seq_length
assert tokens <= max_tokens

View File

@ -53,3 +53,38 @@ def test_processor_override(
assert img_tok_count == expected_toks_per_img * num_imgs
assert pixel_shape[0] == expected_pixels_shape[0] * num_imgs
assert pixel_shape[1] == expected_pixels_shape[1]
@pytest.mark.parametrize("model_id", ["Qwen/Qwen2-VL-2B-Instruct"])
@pytest.mark.parametrize("max_pixels", [1280 * 28 * 28, 1283 * 28 * 28])
def test_get_image_size_with_most_features(
image_assets: ImageTestAssets,
model_id: str,
max_pixels: int,
):
ctx = build_model_context(
model_id,
mm_processor_kwargs={"max_pixels": max_pixels},
limit_mm_per_prompt={"image": 1},
)
processor = MULTIMODAL_REGISTRY.create_processor(ctx.model_config)
hf_processor_mm_kwargs: dict[str, object] = {}
hf_processor = processor.info.get_hf_processor(**hf_processor_mm_kwargs)
merge_size = processor.info.get_hf_config().vision_config.spatial_merge_size
max_image_size = processor.info.get_image_size_with_most_features()
max_tokens = processor.info.get_num_image_tokens(
image_width=max_image_size.width,
image_height=max_image_size.height,
image_processor=hf_processor.image_processor,
)
prompt = "<|vision_start|><|image_pad|><|vision_end|>"
for asset in image_assets:
mm_data = {"image": [asset.pil_image]}
processed_inputs = processor.apply(prompt, mm_data, hf_processor_mm_kwargs)
grid_thw = processed_inputs["mm_kwargs"].get_data()["image_grid_thw"].tolist()
t, h, w = grid_thw[0]
tokens = (t * h * w) // (merge_size**2)
assert tokens < max_tokens

View File

@ -237,8 +237,9 @@ class Gemma3ProcessingInfo(BaseProcessingInfo):
)
max_num_crops = images_kwargs["pan_and_scan_max_num_crops"]
# Result in the max possible feature size (h:w = max_num_crops:1)
return ImageSize(height=50 * max_num_crops, width=50)
vision_config = self.get_hf_config().vision_config
native_size = vision_config.image_size
return ImageSize(height=native_size * max_num_crops, width=native_size)
class Gemma3DummyInputsBuilder(BaseDummyInputsBuilder[Gemma3ProcessingInfo]):

View File

@ -25,6 +25,7 @@
# limitations under the License.
"""Inference-only Qwen2-VL model compatible with HuggingFace weights."""
import math
from collections.abc import Callable, Iterable, Mapping, Sequence
from functools import partial
from typing import Annotated, Any, Literal, TypeAlias
@ -959,13 +960,42 @@ class Qwen2VLProcessingInfo(BaseProcessingInfo):
return num_video_tokens
def get_image_size_with_most_features(self) -> ImageSize:
max_image_size, _ = self._get_vision_info(
image_width=9999999,
image_height=9999999,
num_frames=1,
image_processor=None,
)
return max_image_size
# NOTE: Simply processing a huge size with _get_vision_info might not give a
# size that maximizes the number of featrues, i.e., the number of (merged)
# patches. This is because the number of patches limits the allowed aspect
# ratios. For example, suppose the maximum number of patches is 1280. A square
# image cannot be broken down into 1280 patches, so feeding a giant square image
# into _get_vision_info will not yield a size that maximizes the number of
# patches. Therefore, we directly factorize the maximum number of patches into
# height and width. The tricky part is to avoid extreme aspect ratios (>200 for
# qwen2-vl). If we can't find a suitable aspect ratio, we decrease the number of
# patches and retry. This is safe because the processor does not accept extreme
# aspect ratios, so there is no valid post-resize image with the number of
# patches that yields extreme aspect ratios.
hf_config = self.get_hf_config()
vision_config = hf_config.vision_config
patch_size = vision_config.patch_size
merge_size = vision_config.spatial_merge_size
image_processor = self.get_image_processor()
max_pixels = image_processor.max_pixels or image_processor.size["longest_edge"]
unit = patch_size * merge_size
max_seq_len = max_pixels // (unit * unit)
def closest_factor_pair(n: int) -> tuple[int, int]:
# left <= right
for d in range(math.isqrt(n), 0, -1):
if n % d == 0:
return d, n // d
return 1, n
height_factor, width_factor = 1, max_seq_len
for seq_len in range(max_seq_len, 0, -1):
height_factor, width_factor = closest_factor_pair(seq_len)
if width_factor / height_factor <= 200:
break
return ImageSize(width=unit * width_factor, height=unit * height_factor)
def get_max_image_tokens(self) -> int:
target_width, target_height = self.get_image_size_with_most_features()