mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 02:35:24 +08:00
[ModelOpt] Load w13/w2_input_scale for all experts, nvfp4 (#26135)
Signed-off-by: Shu Wang <shuw@nvidia.com> Signed-off-by: Shu Wang. <shuw@nvidia.com> Co-authored-by: Michael Goin <mgoin64@gmail.com>
This commit is contained in:
parent
aef368aa08
commit
f95da13c3d
@ -49,6 +49,9 @@ from vllm.model_executor.layers.quantization.base_config import (
|
||||
QuantizationConfig,
|
||||
QuantizeMethodBase,
|
||||
)
|
||||
from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
|
||||
is_flashinfer_supporting_global_sf,
|
||||
)
|
||||
from vllm.model_executor.utils import set_weight_attrs
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.platforms.interface import CpuArchEnum
|
||||
@ -1289,6 +1292,7 @@ class FusedMoE(CustomOp):
|
||||
"intermediate_size_per_partition": self.intermediate_size_per_partition,
|
||||
"params_dtype": params_dtype,
|
||||
"weight_loader": self.weight_loader,
|
||||
"global_num_experts": self.global_num_experts,
|
||||
}
|
||||
# need full intermediate size pre-sharding for WNA16 act order
|
||||
if self.quant_method.__class__.__name__ in (
|
||||
@ -1632,13 +1636,25 @@ class FusedMoE(CustomOp):
|
||||
param.data[:, :dim1, :dim2].copy_(loaded_weight)
|
||||
return True if return_success else None
|
||||
|
||||
expert_id = self._map_global_expert_id_to_local_expert_id(expert_id)
|
||||
if expert_id == -1:
|
||||
quant_method_name = self.quant_method.__class__.__name__
|
||||
global_expert_id = expert_id
|
||||
expert_id = self._map_global_expert_id_to_local_expert_id(global_expert_id)
|
||||
|
||||
allow_flashinfer = getattr(self.quant_method, "allow_flashinfer", False)
|
||||
moe_backend = getattr(self.quant_method, "flashinfer_moe_backend", None)
|
||||
|
||||
use_global_sf = (
|
||||
allow_flashinfer
|
||||
and is_flashinfer_supporting_global_sf(moe_backend)
|
||||
and "input_scale" in weight_name
|
||||
and quant_method_name == "ModelOptNvFp4FusedMoE"
|
||||
)
|
||||
|
||||
if expert_id == -1 and not use_global_sf:
|
||||
# Failed to load this param since it's not local to this rank
|
||||
return False if return_success else None
|
||||
# Hereafter, `expert_id` is local physical id
|
||||
|
||||
quant_method_name = self.quant_method.__class__.__name__
|
||||
# compressed-tensors checkpoints with packed weights are stored flipped
|
||||
# TODO (mgoin): check self.quant_method.quant_config.quant_format
|
||||
# against known CompressionFormat enum values that have this quality
|
||||
@ -1723,7 +1739,9 @@ class FusedMoE(CustomOp):
|
||||
)
|
||||
|
||||
self._load_single_value(
|
||||
param=param, loaded_weight=loaded_weight, expert_id=expert_id
|
||||
param=param,
|
||||
loaded_weight=loaded_weight,
|
||||
expert_id=global_expert_id if use_global_sf else expert_id,
|
||||
)
|
||||
return True if return_success else None
|
||||
|
||||
|
||||
@ -49,6 +49,7 @@ from vllm.model_executor.layers.quantization.utils.flashinfer_utils import (
|
||||
build_flashinfer_fp8_cutlass_moe_prepare_finalize,
|
||||
flashinfer_cutlass_moe_fp8,
|
||||
get_flashinfer_moe_backend,
|
||||
is_flashinfer_supporting_global_sf,
|
||||
register_moe_scaling_factors,
|
||||
rotate_flashinfer_fp8_moe_weights,
|
||||
select_cutlass_fp8_gemm_impl,
|
||||
@ -1217,6 +1218,7 @@ class ModelOptNvFp4FusedMoE(FusedMoEMethodBase):
|
||||
weight_dtype = torch.uint8
|
||||
weight_scale_dtype = torch.float8_e4m3fn
|
||||
weight_loader = extra_weight_attrs.get("weight_loader")
|
||||
global_num_experts = extra_weight_attrs.get("global_num_experts")
|
||||
# GEMM 1
|
||||
w13_weight = ModelWeightParameter(
|
||||
data=torch.empty(
|
||||
@ -1295,14 +1297,19 @@ class ModelOptNvFp4FusedMoE(FusedMoEMethodBase):
|
||||
{"quant_method": FusedMoeWeightScaleSupported.TENSOR.value}
|
||||
)
|
||||
|
||||
use_global_sf = self.allow_flashinfer and is_flashinfer_supporting_global_sf(
|
||||
self.flashinfer_moe_backend
|
||||
)
|
||||
global_scale_num_experts = global_num_experts if use_global_sf else num_experts
|
||||
|
||||
w13_input_scale = PerTensorScaleParameter(
|
||||
data=torch.empty(num_experts, 2, dtype=torch.float32),
|
||||
data=torch.empty(global_scale_num_experts, 2, dtype=torch.float32),
|
||||
weight_loader=weight_loader,
|
||||
)
|
||||
layer.register_parameter("w13_input_scale", w13_input_scale)
|
||||
|
||||
w2_input_scale = PerTensorScaleParameter(
|
||||
data=torch.empty(num_experts, dtype=torch.float32),
|
||||
data=torch.empty(global_scale_num_experts, dtype=torch.float32),
|
||||
weight_loader=weight_loader,
|
||||
)
|
||||
layer.register_parameter("w2_input_scale", w2_input_scale)
|
||||
@ -1457,7 +1464,17 @@ class ModelOptNvFp4FusedMoE(FusedMoEMethodBase):
|
||||
layer.w13_weight_scale_2 = Parameter(w13_weight_scale_2, requires_grad=False)
|
||||
|
||||
# Common processing for input scales and alphas
|
||||
w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
|
||||
use_global_sf = self.allow_flashinfer and is_flashinfer_supporting_global_sf(
|
||||
self.flashinfer_moe_backend
|
||||
)
|
||||
if use_global_sf:
|
||||
# For backends provide by Flashinfer, the input global scales are
|
||||
# shared across all experts.
|
||||
w13_input_scale = (
|
||||
layer.w13_input_scale.max().to(torch.float32).expand(layer.num_experts)
|
||||
)
|
||||
else:
|
||||
w13_input_scale = layer.w13_input_scale.max(dim=1).values.to(torch.float32)
|
||||
layer.g1_alphas = Parameter(
|
||||
(w13_input_scale * w13_weight_scale_2).to(torch.float32),
|
||||
requires_grad=False,
|
||||
@ -1469,14 +1486,22 @@ class ModelOptNvFp4FusedMoE(FusedMoEMethodBase):
|
||||
)
|
||||
|
||||
# GEMM 2 processing
|
||||
if use_global_sf:
|
||||
# For backends provide by Flashinfer, the input global scales are
|
||||
# shared across all experts.
|
||||
w2_input_scale = (
|
||||
layer.w2_input_scale.max().to(torch.float32).expand(layer.num_experts)
|
||||
)
|
||||
else:
|
||||
w2_input_scale = layer.w2_input_scale
|
||||
layer.g2_alphas = Parameter(
|
||||
(layer.w2_input_scale * layer.w2_weight_scale_2).to(torch.float32),
|
||||
(w2_input_scale * layer.w2_weight_scale_2).to(torch.float32),
|
||||
requires_grad=False,
|
||||
)
|
||||
|
||||
# This is for quantization, so we need to invert it.
|
||||
layer.w2_input_scale_quant = Parameter(
|
||||
(1 / layer.w2_input_scale).to(torch.float32), requires_grad=False
|
||||
(1 / w2_input_scale).to(torch.float32), requires_grad=False
|
||||
)
|
||||
|
||||
# TensorRT-LLM specific processing
|
||||
|
||||
@ -263,3 +263,9 @@ def get_flashinfer_moe_backend() -> FlashinferMoeBackend:
|
||||
f"Unknown flashinfer moe backend: {flashinfer_moe_backend}"
|
||||
f" expected one of {allowed_backends}"
|
||||
)
|
||||
|
||||
|
||||
def is_flashinfer_supporting_global_sf(backend: FlashinferMoeBackend | None) -> bool:
|
||||
# TODO(shuw@nvidia): Update when new backends are added.
|
||||
backends_supporting_global_sf = (FlashinferMoeBackend.CUTLASS,)
|
||||
return backend in backends_supporting_global_sf
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user