[Model] Add Granite Speech Support (#16246)

Signed-off-by: Alex-Brooks <Alex.brooks@ibm.com>
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
This commit is contained in:
Alex Brooks 2025-04-28 04:05:00 -06:00 committed by GitHub
parent aec9674dbe
commit fa93cd9f60
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 1025 additions and 28 deletions

View File

@ -895,6 +895,13 @@ See [this page](#generative-models) for more information on how to use generativ
* ✅︎
* ✅︎
* ✅︎
- * `GraniteSpeechForConditionalGeneration`
* Granite Speech
* T + A
* `ibm-granite/granite-speech-3.3-8b`
* ✅︎
* ✅︎
* ✅︎
- * `H2OVLChatModel`
* H2OVL
* T + I<sup>E+</sup>

View File

@ -38,6 +38,37 @@ class ModelRequestData(NamedTuple):
# Unless specified, these settings have been tested to work on a single L4.
# Granite Speech
def run_granite_speech(question: str, audio_count: int) -> ModelRequestData:
# NOTE - the setting in this example are somehat different than what is
# optimal for granite speech, and it is generally recommended to use beam
# search. Check the model README for suggested settings.
# https://huggingface.co/ibm-granite/granite-speech-3.3-8b
model_name = "ibm-granite/granite-speech-3.3-8b"
engine_args = EngineArgs(
model=model_name,
trust_remote_code=True,
max_model_len=2048,
max_num_seqs=2,
enable_lora=True,
max_lora_rank=64,
limit_mm_per_prompt={"audio": audio_count},
)
# The model has an audio-specific lora directly in its model dir;
# it should be enabled whenever you pass audio inputs to the model.
speech_lora_path = model_name
audio_placeholder = "<|audio|>" * audio_count
prompts = f"<|start_of_role|>system<|end_of_role|>Knowledge Cutoff Date: April 2024.\nToday's Date: December 19, 2024.\nYou are Granite, developed by IBM. You are a helpful AI assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|>{audio_placeholder}{question}<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>" # noqa: E501
return ModelRequestData(
engine_args=engine_args,
prompt=prompts,
lora_requests=[LoRARequest("speech", 1, speech_lora_path)],
)
# MiniCPM-O
def run_minicpmo(question: str, audio_count: int) -> ModelRequestData:
model_name = "openbmb/MiniCPM-o-2_6"
@ -209,6 +240,7 @@ def run_whisper(question: str, audio_count: int) -> ModelRequestData:
model_example_map = {
"granite_speech": run_granite_speech,
"minicpmo": run_minicpmo,
"phi4_mm": run_phi4mm,
"qwen2_audio": run_qwen2_audio,

View File

@ -21,6 +21,7 @@ from transformers.models.auto.auto_factory import _BaseAutoModelClass
from tests.models.utils import (TokensTextLogprobs,
TokensTextLogprobsPromptLogprobs)
from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.config import TaskOption, _get_and_verify_dtype
@ -103,10 +104,25 @@ class _VideoAssets(_VideoAssetsBase):
return [prompts["sample_demo_1"]]
class _AudioAssetsBase(UserList[AudioAsset]):
pass
class _AudioAssets(_AudioAssetsBase):
def __init__(self) -> None:
super().__init__([
AudioAsset("mary_had_lamb"),
AudioAsset("winning_call"),
])
IMAGE_ASSETS = _ImageAssets()
"""Singleton instance of :class:`_ImageAssets`."""
VIDEO_ASSETS = _VideoAssets()
"""Singleton instance of :class:`_VideoAssets`."""
AUDIO_ASSETS = _AudioAssets()
"""Singleton instance of :class:`_AudioAssets`."""
@pytest.fixture(scope="function", autouse=True)
@ -263,6 +279,11 @@ def video_assets() -> _VideoAssets:
return VIDEO_ASSETS
@pytest.fixture(scope="session")
def audio_assets() -> _AudioAssets:
return AUDIO_ASSETS
_T = TypeVar("_T", nn.Module, torch.Tensor, BatchEncoding, BatchFeature, dict)
_R = TypeVar("_R")
@ -390,10 +411,15 @@ class HfRunner:
processor_kwargs["images"] = image
if videos is not None and (video := videos[i]) is not None:
processor_kwargs["videos"] = video
if audios is not None and (audio_tuple := audios[i]) is not None:
audio, sr = audio_tuple
processor_kwargs["audio"] = audio
processor_kwargs["sampling_rate"] = sr
if audios is not None and (audio_inputs := audios[i]) is not None:
# HACK - not all processors take sampling_rate; we should
# clean this up in the future.
if len(audio_inputs) == 2:
audio, sr = audio_inputs
processor_kwargs["audio"] = audio
processor_kwargs["sampling_rate"] = sr
else:
processor_kwargs["audio"] = audio_inputs
inputs = self.processor(**processor_kwargs)
if isinstance(inputs, BatchFeature):

View File

@ -0,0 +1,143 @@
# SPDX-License-Identifier: Apache-2.0
from collections.abc import Sequence
from typing import Optional
import pytest
from transformers import AutoModelForSpeechSeq2Seq
from vllm.lora.request import LoRARequest
from vllm.sequence import SampleLogprobs
from ....conftest import HfRunner, PromptAudioInput, VllmRunner, _AudioAssets
from ...registry import HF_EXAMPLE_MODELS
from ...utils import check_logprobs_close
HF_AUDIO_PROMPT = "<|start_of_role|>system<|end_of_role|>Knowledge Cutoff Date: April 2024.\nToday's Date: December 19, 2024.\nYou are Granite, developed by IBM. You are a helpful AI assistant<|end_of_text|>\n<|start_of_role|>user<|end_of_role|><|audio|>can you transcribe the speech into a written format?<|end_of_text|>\n<|start_of_role|>assistant<|end_of_role|>" # noqa: E501
def vllm_to_hf_output(
vllm_output: tuple[list[int], str, Optional[SampleLogprobs]],
) -> tuple[list[int], str, Optional[SampleLogprobs]]:
"""Sanitize hf output to be comparable with vllm output."""
output_ids, output_str, out_logprobs = vllm_output
hf_output_str = output_str + "<|end_of_text|>"
return output_ids, hf_output_str, out_logprobs
MODEL_NAME = "ibm-granite/granite-speech-3.3-8b"
# Audio lora co-exists directly in the model directory, but
# currently still needs to be passed directly to vLLM.
audio_lora_path = MODEL_NAME
models = [MODEL_NAME]
def run_test(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
inputs: Sequence[tuple[list[str], PromptAudioInput]],
model: str,
*,
max_model_len: int,
dtype: str,
max_tokens: int,
num_logprobs: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Inference result should be the same between hf and vllm.
All the audio fixtures for the test are from AUDIO_ASSETS.
For huggingface runner, we provide the audio as input.
For vllm runner, we provide MultiModalDataDict objects
and corresponding MultiModalConfig as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
# max_model_len should be greater than image_feature_size
with vllm_runner(
model,
task="generate",
max_model_len=max_model_len,
max_num_seqs=1,
dtype=dtype,
limit_mm_per_prompt={"audio": 1},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enable_lora=True,
max_lora_rank=64,
enforce_eager=True,
) as vllm_model:
lora_request = LoRARequest("audio", 1, audio_lora_path)
vllm_outputs_per_case = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
audios=audios,
lora_request=lora_request)
for prompts, audios in inputs
]
with hf_runner(model, dtype=dtype,
auto_cls=AutoModelForSpeechSeq2Seq) as hf_model:
hf_processor = hf_model.processor
eos_token_id = hf_processor.tokenizer.eos_token_id
hf_outputs_per_case = [
hf_model.generate_greedy_logprobs_limit(prompts,
max_tokens,
num_logprobs=num_logprobs,
audios=[audios],
eos_token_id=eos_token_id)
for prompts, audios in inputs
]
for hf_outputs, vllm_outputs in zip(hf_outputs_per_case,
vllm_outputs_per_case):
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=[
vllm_to_hf_output(output) for output in vllm_outputs
],
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_model_len", [2048])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [10])
def test_models(hf_runner, vllm_runner, model: str, audio_assets: _AudioAssets,
dtype: str, max_model_len: int, max_tokens: int,
num_logprobs: int) -> None:
model_info = HF_EXAMPLE_MODELS.find_hf_info(model)
model_info.check_available_online(on_fail="skip")
model_info.check_transformers_version(on_fail="skip")
audio, sr = audio_assets[0].audio_and_sample_rate
# This model expects 16k sample rate, which our test audio
# already is; if this changes, it may break this test,
# so we check it directly
assert sr == 16000
run_test(
hf_runner,
vllm_runner,
[
([HF_AUDIO_PROMPT], [audio]),
],
model,
dtype=dtype,
max_model_len=max_model_len,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)

View File

@ -11,7 +11,7 @@ from transformers import AutoModel, AutoTokenizer
from vllm.multimodal.audio import resample_audio_librosa
from vllm.sequence import SampleLogprobs
from ....conftest import HfRunner, VllmRunner
from ....conftest import HfRunner, VllmRunner, _AudioAssets
from ....utils import RemoteOpenAIServer
from ...registry import HF_EXAMPLE_MODELS
from ...utils import check_logprobs_close
@ -31,12 +31,6 @@ CHUNKED_PREFILL_KWARGS = {
}
@pytest.fixture(scope="session")
def audio_assets():
from vllm.assets.audio import AudioAsset
return [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")]
@pytest.fixture(scope="module", params=("mary_had_lamb", "winning_call"))
def audio(request):
from vllm.assets.audio import AudioAsset
@ -59,7 +53,7 @@ def params_kwargs_to_cli_args(params_kwargs: dict[str, Any]) -> list[str]:
pytest.param({}, marks=pytest.mark.cpu_model),
pytest.param(CHUNKED_PREFILL_KWARGS),
])
def server(request, audio_assets):
def server(request, audio_assets: _AudioAssets):
args = [
"--dtype", "bfloat16", "--max-model-len", "4096", "--enforce-eager",
"--limit-mm-per-prompt",
@ -230,8 +224,9 @@ def test_models(hf_runner, vllm_runner, audio, dtype: str, max_tokens: int,
pytest.param({}, marks=pytest.mark.cpu_model),
pytest.param(CHUNKED_PREFILL_KWARGS),
])
def test_models_with_multiple_audios(vllm_runner, audio_assets, dtype: str,
max_tokens: int, num_logprobs: int,
def test_models_with_multiple_audios(vllm_runner, audio_assets: _AudioAssets,
dtype: str, max_tokens: int,
num_logprobs: int,
vllm_kwargs: dict) -> None:
vllm_prompt = _get_prompt(len(audio_assets),
@ -250,7 +245,7 @@ def test_models_with_multiple_audios(vllm_runner, audio_assets, dtype: str,
@pytest.mark.asyncio
async def test_online_serving(client, audio_assets):
async def test_online_serving(client, audio_assets: _AudioAssets):
"""Exercises online serving with/without chunked prefill enabled."""
messages = [{

View File

@ -254,6 +254,7 @@ def _test_processing_correctness_mistral(
"adept/fuyu-8b",
"google/gemma-3-4b-it",
"THUDM/glm-4v-9b",
"ibm-granite/granite-speech-3.3-8b",
"h2oai/h2ovl-mississippi-800m",
"OpenGVLab/InternVL2-1B",
"HuggingFaceM4/Idefics3-8B-Llama3",

View File

@ -298,9 +298,11 @@ _MULTIMODAL_EXAMPLE_MODELS = {
extras={"fork": "Isotr0py/deepseek-vl2-tiny"}, # noqa: E501
max_transformers_version="4.48", # noqa: E501
transformers_version_reason="HF model is not compatible.", # noqa: E501
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]}), # noqa: E501
hf_overrides={"architectures": ["DeepseekVLV2ForCausalLM"]}), # noqa: E501
"FuyuForCausalLM": _HfExamplesInfo("adept/fuyu-8b"),
"Gemma3ForConditionalGeneration": _HfExamplesInfo("google/gemma-3-4b-it"),
"GraniteSpeechForConditionalGeneration": _HfExamplesInfo("ibm-granite/granite-speech-3.3-8b", # noqa: E501
min_transformers_version="4.52.0"), # noqa: E501
"GLM4VForCausalLM": _HfExamplesInfo("THUDM/glm-4v-9b",
trust_remote_code=True,
hf_overrides={"architectures": ["GLM4VForCausalLM"]}), # noqa: E501

View File

@ -517,7 +517,7 @@ class BaseMultiModalItemTracker(ABC, Generic[_T]):
raise TypeError(f"Unknown {modality} model type: {model_type}")
elif modality == "audio":
if model_type == "ultravox":
if model_type in ("ultravox", "granite_speech"):
return "<|audio|>"
if model_type == "phi4mm":
return f"<|audio_{current_count}|>"

View File

@ -60,6 +60,7 @@ class Blip2QFormerMultiHeadAttention(nn.Module):
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None:
super().__init__()
@ -139,7 +140,7 @@ class Blip2QFormerMultiHeadAttention(nn.Module):
class Blip2QFormerSelfOutput(nn.Module):
def __init__(self, config: Blip2QFormerConfig) -> None:
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
@ -167,6 +168,7 @@ class Blip2QFormerAttention(nn.Module):
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
is_cross_attention: bool = False,
prefix: str = "",
) -> None:
super().__init__()
@ -175,9 +177,10 @@ class Blip2QFormerAttention(nn.Module):
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=is_cross_attention,
prefix=f"{prefix}.attention",
)
self.output = Blip2QFormerSelfOutput(config)
self.output = Blip2QFormerSelfOutput(config, prefix=f"{prefix}.output")
def forward(
self,
@ -195,7 +198,7 @@ class Blip2QFormerAttention(nn.Module):
class Blip2QFormerIntermediate(nn.Module):
def __init__(self, config: Blip2QFormerConfig) -> None:
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
@ -209,7 +212,7 @@ class Blip2QFormerIntermediate(nn.Module):
class Blip2QFormerOutput(nn.Module):
def __init__(self, config: Blip2QFormerConfig) -> None:
def __init__(self, config: Blip2QFormerConfig, prefix: str = "") -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
@ -237,6 +240,7 @@ class Blip2QFormerLayer(nn.Module):
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
layer_idx: int,
prefix: str = "",
) -> None:
super().__init__()
@ -244,7 +248,8 @@ class Blip2QFormerLayer(nn.Module):
self.seq_len_dim = 1
self.attention = Blip2QFormerAttention(config,
quant_config=quant_config,
cache_config=cache_config)
cache_config=cache_config,
prefix=f"{prefix}.attention")
self.layer_idx = layer_idx
@ -253,13 +258,16 @@ class Blip2QFormerLayer(nn.Module):
config,
quant_config=quant_config,
cache_config=cache_config,
is_cross_attention=True)
is_cross_attention=True,
prefix=f"{prefix}.crossattention")
self.has_cross_attention = True
else:
self.has_cross_attention = False
self.intermediate_query = Blip2QFormerIntermediate(config)
self.output_query = Blip2QFormerOutput(config)
self.intermediate_query = Blip2QFormerIntermediate(
config, prefix=f"{prefix}.intermediate_query")
self.output_query = Blip2QFormerOutput(config,
prefix=f"{prefix}.output_query")
def forward(
self,
@ -325,6 +333,7 @@ class Blip2QFormerEncoder(nn.Module):
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None:
super().__init__()
@ -334,7 +343,8 @@ class Blip2QFormerEncoder(nn.Module):
Blip2QFormerLayer(config,
quant_config=quant_config,
cache_config=cache_config,
layer_idx=layer_idx)
layer_idx=layer_idx,
prefix=f"{prefix}.layer.{layer_idx}")
for layer_idx in range(config.num_hidden_layers)
])
@ -365,6 +375,7 @@ class Blip2QFormerModel(nn.Module):
*,
quant_config: Optional[QuantizationConfig],
cache_config: Optional[CacheConfig],
prefix: str = "",
) -> None:
super().__init__()
@ -376,7 +387,8 @@ class Blip2QFormerModel(nn.Module):
self.encoder = Blip2QFormerEncoder(config,
quant_config=quant_config,
cache_config=cache_config)
cache_config=cache_config,
prefix=f"{prefix}.encoder")
def forward(
self,
@ -511,7 +523,8 @@ class Blip2ForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP,
self.qformer = Blip2QFormerModel(config.qformer_config,
cache_config=cache_config,
quant_config=quant_config)
quant_config=quant_config,
prefix=f"{prefix}.qformer")
self.language_projection = nn.Linear(
config.qformer_config.hidden_size,

View File

@ -0,0 +1,777 @@
# SPDX-License-Identifier: Apache-2.0
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2025 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only IBM Granite speeech model."""
import math
from typing import Iterable, Mapping, Optional, Set, Tuple, TypedDict, Union
import torch
import torch.nn.functional as F
from torch import nn
from transformers import BatchFeature, PretrainedConfig
from vllm.config import CacheConfig, VllmConfig
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import get_sampler
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (MultiModalDataDict, MultiModalFieldConfig,
MultiModalKwargs)
from vllm.multimodal.parse import (AudioProcessorItems, MultiModalDataItems,
MultiModalDataParser)
from vllm.multimodal.processing import (BaseMultiModalProcessor,
BaseProcessingInfo, PromptReplacement,
PromptUpdate)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from .blip2 import Blip2QFormerModel
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
SupportsMultiModal, SupportsPP)
from .utils import (AutoWeightsLoader, embed_multimodal,
init_vllm_registered_model, maybe_prefix)
### Audio Input
class GraniteSpeechAudioInputs(TypedDict):
input_features: torch.Tensor
"""Shape: `(bsz, num_features, 160)`"""
input_features_mask: torch.Tensor
"""Shape: `(bsz, num_features)`"""
audio_embed_sizes: list[int]
"""List of length `bsz`"""
class GraniteSpeechMultiModalProcessingInfo(BaseProcessingInfo):
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
return {"audio": 1}
# There is no limit to the maximum number of audio tokens that can be
# encoded as features; we pick ~5000 as a number that is probably higher
# than we would expect to encounter. The sequence of length
# get_max_audio_len() produces get_max_audio_tokens().
def get_max_audio_tokens(self):
return 5001
def get_max_audio_len(self):
return 8000000
### Input Processing & Multimodal utils
class GraniteSpeechMultiModalProcessor(
BaseMultiModalProcessor[GraniteSpeechMultiModalProcessingInfo]):
def _get_data_parser(self) -> MultiModalDataParser:
feature_extractor = self.info.get_hf_processor().audio_processor
sampling_rate = feature_extractor.melspec_kwargs["sample_rate"]
return MultiModalDataParser(target_sr=sampling_rate)
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
return dict(
input_features=MultiModalFieldConfig.batched("audio"),
audio_embed_sizes=MultiModalFieldConfig.batched("audio"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> list[PromptUpdate]:
processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
tokenizer = self.info.get_tokenizer()
feature_extractor = processor.audio_processor
vocab = tokenizer.get_vocab()
# Use getattr with default to be compatible with transformers<4.48
audio_token = getattr(processor, "audio_token", "<|audio|>")
audio_token_id = vocab[audio_token]
def get_replacement(item_idx: int):
audios = mm_items.get_items("audio", AudioProcessorItems)
audio = audios.get(item_idx)
audio_length = audio.shape[-1]
num_projector_features = feature_extractor._get_num_audio_features(
[audio_length])[0]
return [audio_token_id] * num_projector_features
return [
PromptReplacement(
modality="audio",
target=[audio_token_id],
replacement=get_replacement,
)
]
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
) -> BatchFeature:
mm_data = dict(mm_data)
audios = mm_data.pop("audios", [])
if audios:
# GraniteSpeechFeatureExtractor accepts "audio"
mm_data["audio"] = audios
processed_outputs = super()._call_hf_processor(
prompt=prompt,
mm_data=mm_data,
mm_kwargs=mm_kwargs,
)
if "audio" in mm_data:
# Calculate the number of audio tokens per entry in the batch;
# This is used to split the batch back out after padding.
audio_token_index = self.info.get_hf_config().audio_token_index
processed_outputs["audio_embed_sizes"] = [
torch.sum(indices == audio_token_index).item()
for indices in processed_outputs["input_ids"]
]
return processed_outputs
class GraniteSpeechDummyInputsBuilder(
BaseDummyInputsBuilder[GraniteSpeechMultiModalProcessingInfo]):
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> MultiModalDataDict:
num_audios = mm_counts.get("audio", 0)
return {
"audio":
self._get_dummy_audios(
length=self.info.get_max_audio_len(),
num_audios=num_audios,
)
}
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_audios = mm_counts.get("audio", 0)
hf_processor = self.info.get_hf_processor()
audio_token = getattr(hf_processor, "audio_token", "<|audio|>")
return audio_token * num_audios
### QFormer Projector
class GraniteSpeechEncoderProjector(nn.Module):
def __init__(
self,
config: PretrainedConfig,
cache_config: CacheConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.projector_config.hidden_size
self.downsample_rate = config.downsample_rate
self.window_size = config.window_size
self.num_queries = config.window_size // config.downsample_rate
self.query = nn.Parameter(
torch.zeros(1, self.num_queries,
config.projector_config.hidden_size))
# NOTE - this is implemented generically in transformers,
# but for now we create the QFormer model directly since
# all existing models use this for the projector.
self.qformer = Blip2QFormerModel(
config.projector_config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.qformer",
)
self.linear = nn.Linear(config.projector_config.hidden_size,
config.text_config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, dim = hidden_states.size()
nblocks = math.ceil(seq_len / self.window_size)
pad = nblocks * self.window_size - seq_len
hidden_states = nn.functional.pad(hidden_states, (0, 0, 0, pad),
"constant", 0)
hidden_states = hidden_states.view(batch_size * nblocks,
self.window_size, dim)
last_hidden_state = self.qformer(
query_embeds=self.query.data,
encoder_hidden_states=hidden_states,
)
query_proj = self.linear(
last_hidden_state.view(
batch_size,
nblocks * self.window_size // self.downsample_rate,
-1,
))
return query_proj
# Encoder - conformer is adapted from: https://github.com/lucidrains/conformer.git
# NOTE - it would be nice to see if we can align this with other models using
# conformer in vLLM, e.g., phi4mm audio.
class GraniteSpeechConformerFeedForward(nn.Module):
"""Feedforward module for conformer encoder blocks."""
def __init__(self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = ""):
super().__init__()
self.pre_norm = nn.LayerNorm(config.hidden_dim)
self.up_proj = ColumnParallelLinear(
input_size=config.hidden_dim,
output_size=config.hidden_dim * config.feedforward_mult,
quant_config=quant_config,
prefix=f"{prefix}.up_proj",
)
self.silu = nn.SiLU()
self.down_proj = RowParallelLinear(
input_size=config.hidden_dim * config.feedforward_mult,
output_size=config.hidden_dim,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.pre_norm(hidden_states)
hidden_states, _ = self.up_proj(hidden_states)
hidden_states = self.silu(hidden_states)
hidden_states, _ = self.down_proj(hidden_states)
return hidden_states
class GraniteSpeechConformerAttention(nn.Module):
"""Attention for conformer blocks using Shaw's relative positional
embeddings. See the following [paper](https://arxiv.org/pdf/1803.02155)
for more details.
"""
def __init__(self, config: PretrainedConfig, prefix: str = ""):
super().__init__()
inner_dim = config.dim_head * config.num_heads
self.max_pos_emb = config.max_pos_emb
self.context_size = config.context_size
self.num_heads = config.num_heads
self.dim_head = config.dim_head
self.scale = self.dim_head**-0.5
self.pre_norm = nn.LayerNorm(config.hidden_dim)
self.to_q = nn.Linear(config.hidden_dim, inner_dim, bias=False)
self.to_kv = nn.Linear(config.hidden_dim, inner_dim * 2, bias=False)
self.to_out = nn.Linear(inner_dim, config.hidden_dim)
self.rel_pos_emb = nn.Embedding(2 * self.max_pos_emb + 1,
self.dim_head)
if self.context_size <= 0 or self.context_size > self.max_pos_emb:
raise ValueError(
"Context size is either less than 0 or exceeds the max_pos_emb"
)
def forward(self, hidden_states: torch.Tensor,
attention_dists: torch.Tensor) -> torch.Tensor:
hidden_states = self.pre_norm(hidden_states)
bsz, num_features, _ = hidden_states.shape
num_blocks = math.ceil(num_features / self.context_size)
remainder = num_features % self.context_size
if remainder > 0:
# right padding to reach block size
hidden_states = torch.nn.functional.pad(
hidden_states, (0, 0, 0, self.context_size - remainder))
# NOTE: would be nice to try to use qkvparallellinear
# here for this block attention implementation if possible
query_states = self.to_q(hidden_states)
key_states, value_states = self.to_kv(hidden_states).chunk(2, dim=-1)
query_states = query_states.reshape(bsz, num_blocks, self.context_size,
self.num_heads,
-1).transpose(2, 3)
key_states = key_states.reshape(bsz, num_blocks, self.context_size,
self.num_heads, -1).transpose(2, 3)
value_states = value_states.reshape(bsz, num_blocks, self.context_size,
self.num_heads,
-1).transpose(2, 3)
# shaw's relative positional embedding
dist = attention_dists.to(hidden_states.device)
rel_pos_emb = self.rel_pos_emb(dist)
rel_pos_emb_expanded = rel_pos_emb.view([1, 1, 1] +
list(rel_pos_emb.shape))
pos_attn = torch.sum(query_states.unsqueeze(-2) * rel_pos_emb_expanded,
dim=-1) * self.scale
if remainder > 0:
# masked attention in the extended block
mask = torch.ones(self.context_size,
self.context_size,
dtype=bool,
device=hidden_states.device)
mask[:remainder, :remainder] = 0
mask_value = -torch.finfo(pos_attn.dtype).max
pos_attn[:, -1, :].masked_fill_(mask, mask_value)
with torch.nn.attention.sdpa_kernel(
torch.nn.attention.SDPBackend.MATH):
out = F.scaled_dot_product_attention(query_states,
key_states,
value_states,
attn_mask=pos_attn,
scale=self.scale)
out = out.transpose(2, 3).reshape(bsz, hidden_states.shape[1], -1)
return self.to_out(out[:, :num_features, :])
class GraniteSpeechConformerDepthWiseConv1d(nn.Module):
"""Wrapper for padded 1D pointwise convolution."""
def __init__(self,
chan_in: int,
chan_out: int,
kernel_size: int,
prefix: str = ""):
super().__init__()
# Padding for the 1D conv is symmetric or close (i.e., offset by one).
pad = kernel_size // 2
pad_offset = (kernel_size + 1) % 2
self.padding = (pad, pad - pad_offset)
self.conv = nn.Conv1d(chan_in,
chan_out,
kernel_size,
groups=chan_in,
bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = F.pad(hidden_states, self.padding)
return self.conv(hidden_states)
class GraniteSpeechConformerConvModule(nn.Module):
"""Conformer conv module consisting of several 1D/depthwise 1D
convolutional layers.
"""
def __init__(self, config: PretrainedConfig, prefix: str = ""):
super().__init__()
inner_dim = config.hidden_dim * config.conv_expansion_factor
self.norm = nn.LayerNorm(config.hidden_dim)
self.up_conv = nn.Conv1d(config.hidden_dim, inner_dim * 2, 1)
self.glu = nn.GLU(dim=1)
self.depth_conv = GraniteSpeechConformerDepthWiseConv1d(
inner_dim,
inner_dim,
kernel_size=config.conv_kernel_size,
prefix=f"{prefix}.depth_conv",
)
self.silu = nn.SiLU()
self.batch_norm = nn.BatchNorm1d(inner_dim)
self.down_conv = nn.Conv1d(inner_dim, config.hidden_dim, 1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.norm(hidden_states)
hidden_states = self.up_conv(hidden_states.permute(0, 2, 1))
hidden_states = self.glu(hidden_states)
hidden_states = self.depth_conv(hidden_states)
hidden_states = self.silu(self.batch_norm(hidden_states))
hidden_states = self.down_conv(hidden_states).permute(0, 2, 1)
return hidden_states
class GraniteSpeechConformerBlock(nn.Module):
"""Conformer block, consisting largely of linear layers,
attention, and convolutional layers."""
def __init__(self, config: PretrainedConfig, prefix: str = ""):
super().__init__()
self.ff1 = GraniteSpeechConformerFeedForward(config,
prefix=f"{prefix}.ff1")
self.attn = GraniteSpeechConformerAttention(config,
prefix=f"{prefix}.attn")
self.conv = GraniteSpeechConformerConvModule(config,
prefix=f"{prefix}.conv")
self.ff2 = GraniteSpeechConformerFeedForward(config,
prefix=f"{prefix}.ff2")
self.post_norm = nn.LayerNorm(config.hidden_dim)
def forward(self, hidden_states: torch.Tensor,
attention_dists: torch.Tensor) -> torch.Tensor:
hidden_states = 0.5 * self.ff1(hidden_states) + hidden_states
hidden_states = self.attn(
hidden_states, attention_dists=attention_dists) + hidden_states
hidden_states = self.conv(hidden_states) + hidden_states
hidden_states = 0.5 * self.ff2(hidden_states) + hidden_states
hidden_states = self.post_norm(hidden_states)
return hidden_states
class GraniteSpeechCTCEncoder(nn.Module):
"""CTC Encoder comprising conformer blocks and additional linear layers."""
def __init__(self,
config: PretrainedConfig,
prefix: str,
quant_config: Optional[QuantizationConfig] = None):
super().__init__()
self.config = config
# Precompute clamped relative positional encoding distances
seq = torch.arange(config.context_size)
relpos_dist = seq.view(-1, 1) - seq.view(1, -1)
self.attention_dists = torch.clamp(
relpos_dist, -config.context_size,
config.context_size) + config.max_pos_emb
self.input_linear = nn.Linear(config.input_dim,
config.hidden_dim,
bias=True)
self.layers = nn.ModuleList([
GraniteSpeechConformerBlock(
config,
prefix=f"{prefix}.layers.{idx}",
) for idx in range(config.num_layers)
])
self.out = ColumnParallelLinear(
input_size=config.hidden_dim,
output_size=config.output_dim,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.out",
)
self.out_mid = RowParallelLinear(
input_size=config.output_dim,
output_size=config.hidden_dim,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.out_mid",
)
self.softmax = nn.Softmax(dim=-1)
self.num_layers = config.num_layers
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.input_linear(hidden_states)
for idx, layer in enumerate(self.layers, start=1):
hidden_states = layer(hidden_states,
attention_dists=self.attention_dists)
if idx == self.num_layers // 2:
hidden_states_mid = hidden_states.clone()
hidden_states_mid, _ = self.out(hidden_states_mid)
hidden_states_mid = self.softmax(hidden_states_mid)
hidden_states_mid, _ = self.out_mid(hidden_states_mid)
hidden_states += hidden_states_mid
return hidden_states
@MULTIMODAL_REGISTRY.register_processor(
GraniteSpeechMultiModalProcessor,
info=GraniteSpeechMultiModalProcessingInfo,
dummy_inputs=GraniteSpeechDummyInputsBuilder)
class GraniteSpeechForConditionalGeneration(
nn.Module,
SupportsMultiModal,
SupportsPP,
SupportsLoRA,
):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
cache_config = vllm_config.cache_config
self.config = config
self.quant_config = quant_config
self.cache_config = cache_config
self.sampler = get_sampler()
# The language model is typically a Granite LLM
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
# Conformer encoder
self.encoder = GraniteSpeechCTCEncoder(
config=config.encoder_config,
quant_config=quant_config,
prefix=f"{prefix}.encoder",
)
# Blip2 QFormer
self.projector = GraniteSpeechEncoderProjector(
config=config,
quant_config=quant_config,
cache_config=cache_config,
prefix=f"{prefix}.projector",
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
def _parse_and_validate_audio_input(
self,
**kwargs: object,
) -> Optional[GraniteSpeechAudioInputs]:
input_features = kwargs.pop("input_features", None)
input_features_mask = kwargs.pop("input_features_mask", None)
audio_embed_sizes = kwargs.pop("audio_embed_sizes", None)
if input_features is None:
return None
# If we have a batch of variable feature length audio clips, we need
# to mask the features; usually we would get an input_features_mask
# from the processor, but we handle rebuilding it here since
# vLLM generally processes everything independently + batches.
if input_features_mask is None:
input_features_mask = self._build_input_features_mask(
audio_embed_sizes)
if not isinstance(input_features, (torch.Tensor, list)):
raise ValueError("Incorrect type of audio input features. "
f"Got type: {type(input_features)}")
if input_features_mask is not None and not isinstance(
input_features_mask, torch.Tensor):
raise ValueError("Incorrect type of audio input features mask. "
f"Got type: {type(input_features_mask)}")
if isinstance(input_features, torch.Tensor):
# Granite speech currently only allows one audio token per instance
# and features are already unsqueezed in the processor, so one
# instance will have shape [1, {num_features}, 160]. As such,
# input features will usually be of shape
# [bsz, 1, num_features, 160], which we squeeze to be 3D here.
if len(input_features.shape) == 4:
input_features = input_features.squeeze(1)
if len(input_features.shape) != 3:
raise ValueError(
"Squeezed input features should be 3D but are of shape "
f"{input_features.shape}")
input_features = input_features.to(
self.encoder.input_linear.weight.dtype)
else:
# Otherwise we have a list of tensors, which are almost certainly
# differing in their respective numbers of audio features;
# stack them into a 3D tensor of size [bsz, most_num_features, 160].
input_features = self._pad_and_stack_input_features(
input_features, ).to(self.encoder.input_linear.weight.dtype)
return GraniteSpeechAudioInputs(
input_features=input_features,
input_features_mask=input_features_mask,
audio_embed_sizes=audio_embed_sizes.flatten().tolist(),
)
def _build_input_features_mask(
self,
audio_embed_sizes: torch.Tensor,
) -> torch.Tensor:
"""Calculate the input features mask, which will generally be used
to mask the the padded features for all entries in the batch except
for those with the most audio features.
Args:
audio_embed_sizes: torch.Tensor
Tensor of num features in each seq in the batch.
Returns:
torch.Tensor: Mask of shape (bsz, num_features) to be applied to
the audio features prior to splitting the audio embeddings.
"""
most_audio_features = torch.max(audio_embed_sizes).item()
mask_indices = torch.arange(
most_audio_features,
device=audio_embed_sizes.device,
).view(1, -1)
input_features_mask = mask_indices < audio_embed_sizes.view(-1, 1)
return input_features_mask
def _pad_and_stack_input_features(
self,
input_features: list[torch.Tensor],
) -> torch.Tensor:
"""Given a list of input features of varying length, pad them to the
same length and stack them into a torch.Tensor.
NOTE: Usually, padding is done in the input processor/feature extractor
and zero padded prior to the computation of the Mel features; the
resulting values are only constant within a batch and generally nonzero
(i.e., slightly negative nums); we should validate that this is okay
since we don't use a feature attention mask, but the more important
thing is that we apply the input_features_mask with variable len
batches.
Args:
input_features: list[torch.Tensor]
Input features to be coerced into a tensor.
Returns:
torch.Tensor: Tensor of shape [bsz, num_features, 160], where
num_features is the max number of features of any entry in the
batch.
"""
# Input features are of shape [bsz, num_features, 160]
feat_lens = [feats.shape[1] for feats in input_features]
padding = [max(feat_lens) - length for length in feat_lens]
# TODO (Alex) - Validate that it's okay to zero pad like this;
# in transformers we zero pad prior to calculating the speech features,
# so the value is not zero and is dependent on the batched features.
padded = [
torch.nn.functional.pad(feats, (0, 0, 0, pad, 0, 0))
for feats, pad in zip(input_features, padding)
]
stacked_features = torch.cat(padded, dim=0).to(input_features[0])
return stacked_features
def _process_audio_input(
self,
audio_input: GraniteSpeechAudioInputs,
) -> tuple[torch.Tensor]:
"""Compute the audio features to be merged into the LLM embeddings.
Args:
audio_input: GraniteSpeechAudioInputs
Audio inputs object containing Mel features, an input features
mask, and the (flattened) number of audio tokens per instance.
Returns:
tuple[torch.Tensor]: List of length bsz.
"""
# TODO (Alex) - support embedding inputs
encoder_embeds = self.encoder(audio_input["input_features"])
# [bsz, <max feature size>, 4096]
projected_embeds = self.projector(encoder_embeds)
# Apply mask on variable length audio features
masked_embeds = projected_embeds[audio_input["input_features_mask"]]
# Split variable length features into a tuple
return torch.split(masked_embeds, audio_input["audio_embed_sizes"])
def get_multimodal_embeddings(
self,
**kwargs: object,
) -> Optional[MultiModalEmbeddings]:
"""Compute the audio embeddings if audio inputs are present."""
audio_input = self._parse_and_validate_audio_input(**kwargs)
if audio_input is None:
return None
audio_features = self._process_audio_input(audio_input)
return audio_features
def get_input_embeddings(
self,
input_ids: torch.Tensor,
multimodal_embeddings: Optional[MultiModalEmbeddings] = None,
) -> torch.Tensor:
"""Compute the merged LLM / audio embeddings."""
if multimodal_embeddings is None:
return self.language_model.get_input_embeddings(input_ids)
inputs_embeds = embed_multimodal(
input_ids,
self.config.audio_token_index,
self.language_model.model.get_input_embeddings,
multimodal_embeddings,
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs: object,
) -> Union[torch.Tensor, IntermediateTensors]:
if intermediate_tensors is not None:
inputs_embeds = None
# NOTE: In v1, inputs_embeds is always generated at model runner, this
# condition is for v0 compatibility.
elif inputs_embeds is None:
audio_embeds = self.get_multimodal_embeddings(**kwargs)
inputs_embeds = self.get_input_embeddings(input_ids, audio_embeds)
input_ids = None
model_output = self.language_model(input_ids, positions,
intermediate_tensors, inputs_embeds)
return model_output
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
return self.language_model.compute_logits(
hidden_states,
sampling_metadata,
)
def load_weights(
self,
weights: Iterable[Tuple[str, torch.Tensor]],
) -> Set[str]:
loader = AutoWeightsLoader(self)
return loader.load_weights(weights)
def get_mm_mapping(self) -> MultiModelKeys:
"""Get the module prefix in multimodal models."""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="projector",
tower_model="encoder",
)

View File

@ -178,6 +178,7 @@ _MULTIMODAL_MODELS = {
"FuyuForCausalLM": ("fuyu", "FuyuForCausalLM"),
"Gemma3ForConditionalGeneration": ("gemma3_mm", "Gemma3ForConditionalGeneration"), # noqa: E501
"GLM4VForCausalLM": ("glm4v", "GLM4VForCausalLM"),
"GraniteSpeechForConditionalGeneration": ("granite_speech", "GraniteSpeechForConditionalGeneration"), # noqa: E501
"H2OVLChatModel": ("h2ovl", "H2OVLChatModel"),
"InternVLChatModel": ("internvl", "InternVLChatModel"),
"Idefics3ForConditionalGeneration":("idefics3","Idefics3ForConditionalGeneration"),