mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-15 08:24:59 +08:00
[Bugfix][Model] Refactor OLMo model to support new HF format in transformers 4.40.0 (#4324)
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
parent
479d69fad0
commit
fbf152d976
@ -74,7 +74,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
|
|||||||
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
|
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
|
||||||
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.)
|
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, `mistral-community/Mixtral-8x22B-v0.1`, etc.)
|
||||||
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
|
||||||
- OLMo (`allenai/OLMo-1B`, `allenai/OLMo-7B`, etc.)
|
- OLMo (`allenai/OLMo-1B-hf`, `allenai/OLMo-7B-hf`, etc.)
|
||||||
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
|
||||||
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
|
- Orion (`OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc.)
|
||||||
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
|
- Phi (`microsoft/phi-1_5`, `microsoft/phi-2`, etc.)
|
||||||
|
|||||||
@ -101,7 +101,7 @@ Alongside each architecture, we include some popular models that use it.
|
|||||||
-
|
-
|
||||||
* - :code:`OLMoForCausalLM`
|
* - :code:`OLMoForCausalLM`
|
||||||
- OLMo
|
- OLMo
|
||||||
- :code:`allenai/OLMo-1B`, :code:`allenai/OLMo-7B`, etc.
|
- :code:`allenai/OLMo-1B-hf`, :code:`allenai/OLMo-7B-hf`, etc.
|
||||||
-
|
-
|
||||||
* - :code:`OPTForCausalLM`
|
* - :code:`OPTForCausalLM`
|
||||||
- OPT, OPT-IML
|
- OPT, OPT-IML
|
||||||
|
|||||||
@ -26,7 +26,6 @@ requests
|
|||||||
ray
|
ray
|
||||||
peft
|
peft
|
||||||
awscli
|
awscli
|
||||||
ai2-olmo # required for OLMo
|
|
||||||
|
|
||||||
# Benchmarking
|
# Benchmarking
|
||||||
aiohttp
|
aiohttp
|
||||||
|
|||||||
@ -42,7 +42,7 @@ _MODELS = {
|
|||||||
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
|
"MptForCausalLM": ("mpt", "MPTForCausalLM"),
|
||||||
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
|
"MPTForCausalLM": ("mpt", "MPTForCausalLM"),
|
||||||
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
|
"MiniCPMForCausalLM": ("minicpm", "MiniCPMForCausalLM"),
|
||||||
"OLMoForCausalLM": ("olmo", "OLMoForCausalLM"),
|
"OlmoForCausalLM": ("olmo", "OlmoForCausalLM"),
|
||||||
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
|
"OPTForCausalLM": ("opt", "OPTForCausalLM"),
|
||||||
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
|
"OrionForCausalLM": ("orion", "OrionForCausalLM"),
|
||||||
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
|
"PhiForCausalLM": ("phi", "PhiForCausalLM"),
|
||||||
|
|||||||
@ -1,53 +1,36 @@
|
|||||||
# coding=utf-8
|
# coding=utf-8
|
||||||
# Adapted from
|
# Adapted from
|
||||||
# https://github.com/allenai/OLMo/blob/v0.2.4/olmo/model.py and
|
# https://github.com/huggingface/transformers/blob/v4.40.1/src/transformers/models/olmo/modeling_olmo.py
|
||||||
# https://github.com/allenai/OLMo/blob/v0.2.4/hf_olmo/modeling_olmo.py
|
# Copyright 2024 The vLLM team.
|
||||||
# Copyright 2023 The vLLM team.
|
# Copyright 2024 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||||
# Copyright (c) Microsoft Corporation.
|
|
||||||
# Licensed under the MIT license.
|
|
||||||
#
|
#
|
||||||
# BSD 3-Clause License
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
#
|
#
|
||||||
# Copyright (c) 2022, Tri Dao, trid@cs.stanford.edu.
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# All rights reserved.
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
#
|
#
|
||||||
# Redistribution and use in source and binary forms, with or without
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
# modification, are permitted provided that the following conditions are met:
|
|
||||||
#
|
#
|
||||||
# * Redistributions of source code must retain the above copyright notice, this
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
# list of conditions and the following disclaimer.
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
#
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# * Redistributions in binary form must reproduce the above copyright notice,
|
# See the License for the specific language governing permissions and
|
||||||
# this list of conditions and the following disclaimer in the documentation
|
# limitations under the License.
|
||||||
# and/or other materials provided with the distribution.
|
|
||||||
#
|
|
||||||
# * Neither the name of the copyright holder nor the names of its
|
|
||||||
# contributors may be used to endorse or promote products derived from
|
|
||||||
# this software without specific prior written permission.
|
|
||||||
#
|
|
||||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
||||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
||||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
||||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
||||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
||||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
||||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
||||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
||||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
||||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
||||||
"""Inference-only OLMo model compatible with HuggingFace weights."""
|
"""Inference-only OLMo model compatible with HuggingFace weights."""
|
||||||
from typing import Iterable, List, Optional, Tuple
|
from typing import Iterable, List, Optional, Tuple
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
# this model must need this dependency
|
|
||||||
from hf_olmo import OLMoConfig
|
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
from transformers import OlmoConfig
|
||||||
|
|
||||||
from vllm.attention import Attention, AttentionMetadata
|
from vllm.attention import Attention, AttentionMetadata
|
||||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||||
from vllm.model_executor.layers.activation import SiluAndMul
|
from vllm.model_executor.layers.activation import SiluAndMul
|
||||||
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
from vllm.model_executor.layers.linear import (LinearMethodBase,
|
||||||
LinearMethodBase,
|
|
||||||
MergedColumnParallelLinear,
|
MergedColumnParallelLinear,
|
||||||
QKVParallelLinear,
|
QKVParallelLinear,
|
||||||
RowParallelLinear)
|
RowParallelLinear)
|
||||||
@ -55,7 +38,7 @@ from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|||||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||||
from vllm.model_executor.layers.sampler import Sampler
|
from vllm.model_executor.layers.sampler import Sampler
|
||||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||||
VocabParallelEmbedding)
|
ParallelLMHead, VocabParallelEmbedding)
|
||||||
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
||||||
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||||
from vllm.sequence import SamplerOutput
|
from vllm.sequence import SamplerOutput
|
||||||
@ -70,55 +53,52 @@ class OlmoAttention(nn.Module):
|
|||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
config: OLMoConfig,
|
config: OlmoConfig,
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
linear_method: Optional[LinearMethodBase] = None,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.hidden_size = config.d_model
|
self.hidden_size = config.hidden_size
|
||||||
assert config.d_model % config.n_heads == 0
|
|
||||||
tensor_model_parallel_world_size = (
|
tensor_model_parallel_world_size = (
|
||||||
get_tensor_model_parallel_world_size())
|
get_tensor_model_parallel_world_size())
|
||||||
self.total_num_heads = self.config.n_heads
|
self.total_num_heads = config.num_attention_heads
|
||||||
|
|
||||||
|
assert self.hidden_size % self.total_num_heads == 0
|
||||||
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
||||||
|
|
||||||
self.num_heads = (self.total_num_heads //
|
self.num_heads = (self.total_num_heads //
|
||||||
tensor_model_parallel_world_size)
|
tensor_model_parallel_world_size)
|
||||||
self.head_dim = self.hidden_size // self.total_num_heads
|
self.head_dim = self.hidden_size // self.total_num_heads
|
||||||
|
self.max_position_embeddings = config.max_position_embeddings
|
||||||
|
self.rope_theta = config.rope_theta
|
||||||
|
self.clip_qkv = config.clip_qkv
|
||||||
|
|
||||||
# Layer norms.
|
|
||||||
self.attn_norm = nn.LayerNorm(config.d_model,
|
|
||||||
elementwise_affine=False,
|
|
||||||
bias=False)
|
|
||||||
# Attention input projection. Projects x -> (q, k, v)
|
# Attention input projection. Projects x -> (q, k, v)
|
||||||
self.att_proj = QKVParallelLinear(
|
self.qkv_proj = QKVParallelLinear(
|
||||||
config.d_model,
|
self.hidden_size,
|
||||||
self.head_dim,
|
self.head_dim,
|
||||||
self.total_num_heads,
|
self.total_num_heads,
|
||||||
bias=config.include_bias,
|
bias=config.attention_bias,
|
||||||
linear_method=linear_method,
|
linear_method=linear_method,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Rotary embeddings.
|
# Rotary embeddings.
|
||||||
if self.config.rope:
|
self.rotary_emb = get_rope(
|
||||||
rope_theta = getattr(config, "rope_theta", 10000)
|
self.head_dim,
|
||||||
max_position_embeddings = getattr(config,
|
rotary_dim=self.head_dim,
|
||||||
"max_position_embeddings", 8192)
|
max_position=self.max_position_embeddings,
|
||||||
self.rotary_emb = get_rope(
|
base=self.rope_theta,
|
||||||
self.head_dim,
|
)
|
||||||
rotary_dim=self.head_dim,
|
|
||||||
max_position=max_position_embeddings,
|
|
||||||
base=rope_theta,
|
|
||||||
)
|
|
||||||
self.scaling = self.head_dim**-0.5
|
self.scaling = self.head_dim**-0.5
|
||||||
self.attn = Attention(self.num_heads,
|
self.attn = Attention(self.num_heads,
|
||||||
self.head_dim,
|
self.head_dim,
|
||||||
scale=self.scaling)
|
scale=self.scaling)
|
||||||
|
|
||||||
# Attention output projection.
|
# Attention output projection.
|
||||||
self.attn_out = RowParallelLinear(
|
self.o_proj = RowParallelLinear(
|
||||||
config.d_model,
|
self.hidden_size,
|
||||||
config.d_model,
|
self.hidden_size,
|
||||||
bias=config.include_bias,
|
bias=config.attention_bias,
|
||||||
linear_method=linear_method,
|
linear_method=linear_method,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -129,13 +109,13 @@ class OlmoAttention(nn.Module):
|
|||||||
kv_cache: torch.Tensor,
|
kv_cache: torch.Tensor,
|
||||||
attn_metadata: AttentionMetadata,
|
attn_metadata: AttentionMetadata,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
hidden_states = self.attn_norm(hidden_states)
|
qkv, _ = self.qkv_proj(hidden_states)
|
||||||
qkv, _ = self.att_proj(hidden_states)
|
if self.clip_qkv is not None:
|
||||||
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
||||||
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
||||||
if self.config.rope:
|
q, k = self.rotary_emb(positions, q, k)
|
||||||
q, k = self.rotary_emb(positions, q, k)
|
|
||||||
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
||||||
output, _ = self.attn_out(attn_output)
|
output, _ = self.o_proj(attn_output)
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
@ -148,37 +128,30 @@ class OlmoMLP(nn.Module):
|
|||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
config: OLMoConfig,
|
config: OlmoConfig,
|
||||||
linear_method: Optional[LinearMethodBase] = None,
|
linear_method: Optional[LinearMethodBase] = None,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.hidden_size = (config.mlp_hidden_size if config.mlp_hidden_size
|
self.hidden_size = config.hidden_size
|
||||||
is not None else config.mlp_ratio * config.d_model)
|
self.intermediate_size = config.intermediate_size
|
||||||
|
|
||||||
# Layer norms.
|
|
||||||
self.ff_norm = nn.LayerNorm(config.d_model,
|
|
||||||
elementwise_affine=False,
|
|
||||||
bias=False)
|
|
||||||
|
|
||||||
# Feed-forward input projection.
|
# Feed-forward input projection.
|
||||||
self.ff_proj = MergedColumnParallelLinear(
|
self.gate_up_proj = MergedColumnParallelLinear(
|
||||||
config.d_model,
|
self.hidden_size,
|
||||||
[self.hidden_size // 2] * 2,
|
[self.intermediate_size] * 2,
|
||||||
bias=config.include_bias,
|
bias=False,
|
||||||
linear_method=linear_method,
|
linear_method=linear_method,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Activation function.
|
# Activation function.
|
||||||
self.act = SiluAndMul()
|
self.act_fn = SiluAndMul()
|
||||||
self.act.output_multiplier = 0.5
|
|
||||||
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
|
||||||
|
|
||||||
# Feed-forward output projection.
|
# Feed-forward output projection.
|
||||||
self.ff_out = RowParallelLinear(
|
self.down_proj = RowParallelLinear(
|
||||||
int(self.act.output_multiplier * self.hidden_size),
|
self.intermediate_size,
|
||||||
config.d_model,
|
self.hidden_size,
|
||||||
bias=config.include_bias,
|
bias=False,
|
||||||
linear_method=linear_method,
|
linear_method=linear_method,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -186,19 +159,13 @@ class OlmoMLP(nn.Module):
|
|||||||
self,
|
self,
|
||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
# Add feed-forward projection.
|
gate_up, _ = self.gate_up_proj(x)
|
||||||
# shape: (batch_size, seq_len, d_model)
|
x = self.act_fn(gate_up)
|
||||||
og_x = x
|
x, _ = self.down_proj(x)
|
||||||
x = self.ff_norm(x)
|
|
||||||
x, _ = self.ff_proj(x)
|
|
||||||
x = self.act(x)
|
|
||||||
x, _ = self.ff_out(x)
|
|
||||||
x = og_x + x
|
|
||||||
|
|
||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class OlmoBlock(nn.Module):
|
class OlmoDecoderLayer(nn.Module):
|
||||||
"""
|
"""
|
||||||
This is a typical transformer block where the output is
|
This is a typical transformer block where the output is
|
||||||
computed as ``MLP(LN(x + Attention(LN(x))))``
|
computed as ``MLP(LN(x + Attention(LN(x))))``
|
||||||
@ -206,15 +173,23 @@ class OlmoBlock(nn.Module):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
config: OLMoConfig,
|
config: OlmoConfig,
|
||||||
linear_method: Optional[LinearMethodBase] = None):
|
linear_method: Optional[LinearMethodBase] = None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
# Attention block.
|
# Attention block.
|
||||||
self.attn = OlmoAttention(config, linear_method)
|
self.self_attn = OlmoAttention(config, linear_method)
|
||||||
|
|
||||||
# MLP block.
|
# MLP block.
|
||||||
self.mlp = OlmoMLP(config, linear_method)
|
self.mlp = OlmoMLP(config, linear_method)
|
||||||
|
|
||||||
|
# LayerNorm
|
||||||
|
self.input_layernorm = nn.LayerNorm(config.hidden_size,
|
||||||
|
elementwise_affine=False,
|
||||||
|
bias=False)
|
||||||
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size,
|
||||||
|
elementwise_affine=False,
|
||||||
|
bias=False)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
positions: torch.Tensor,
|
positions: torch.Tensor,
|
||||||
@ -223,52 +198,37 @@ class OlmoBlock(nn.Module):
|
|||||||
attn_metadata: AttentionMetadata,
|
attn_metadata: AttentionMetadata,
|
||||||
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||||
# Attention block.
|
# Attention block.
|
||||||
og_x = hidden_states
|
residual = hidden_states
|
||||||
x = self.attn(positions, hidden_states, kv_cache, attn_metadata)
|
hidden_states = self.input_layernorm(hidden_states)
|
||||||
x = x + og_x
|
hidden_states = self.self_attn(positions, hidden_states, kv_cache,
|
||||||
|
attn_metadata)
|
||||||
|
hidden_states = hidden_states + residual
|
||||||
|
|
||||||
# MLP block.
|
# MLP block.
|
||||||
hidden_states = self.mlp(x)
|
residual = hidden_states
|
||||||
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
||||||
|
hidden_states = self.mlp(hidden_states)
|
||||||
|
hidden_states = residual + hidden_states
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
class OlmoModel(nn.Module):
|
class OlmoModel(nn.Module):
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
config: OLMoConfig,
|
config: OlmoConfig,
|
||||||
linear_method: Optional[LinearMethodBase] = None):
|
linear_method: Optional[LinearMethodBase] = None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
|
|
||||||
self.transformer = nn.ModuleDict(
|
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
|
||||||
dict(
|
config.hidden_size)
|
||||||
wte=VocabParallelEmbedding(
|
self.layers = nn.ModuleList([
|
||||||
config.embedding_size or config.vocab_size,
|
OlmoDecoderLayer(config, linear_method)
|
||||||
config.d_model,
|
for layer_idx in range(config.num_hidden_layers)
|
||||||
),
|
])
|
||||||
ln_f=nn.LayerNorm(config.d_model,
|
self.norm = nn.LayerNorm(config.hidden_size,
|
||||||
elementwise_affine=False,
|
elementwise_affine=False,
|
||||||
bias=False),
|
bias=False)
|
||||||
))
|
|
||||||
|
|
||||||
blocks = [
|
|
||||||
OlmoBlock(config, linear_method) for i in range(config.n_layers)
|
|
||||||
]
|
|
||||||
if self.config.block_group_size > 1:
|
|
||||||
raise NotImplementedError("Block group size > 1 not supported yet")
|
|
||||||
else:
|
|
||||||
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
|
||||||
|
|
||||||
if not config.weight_tying:
|
|
||||||
self.transformer.update({
|
|
||||||
"ff_out":
|
|
||||||
ColumnParallelLinear(
|
|
||||||
config.d_model,
|
|
||||||
config.embedding_size or config.vocab_size,
|
|
||||||
bias=config.include_bias,
|
|
||||||
linear_method=linear_method,
|
|
||||||
)
|
|
||||||
})
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self,
|
self,
|
||||||
@ -282,39 +242,49 @@ class OlmoModel(nn.Module):
|
|||||||
"""
|
"""
|
||||||
# Get embeddings of input.
|
# Get embeddings of input.
|
||||||
# shape: (batch_size, seq_len, d_model)
|
# shape: (batch_size, seq_len, d_model)
|
||||||
x = self.transformer.wte(input_ids) # type: ignore
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
# embed positions
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
# Apply blocks one-by-one.
|
# Apply blocks one-by-one.
|
||||||
for block_idx, block in enumerate(self.transformer.blocks):
|
for layer_idx, decoder_layer in enumerate(self.layers):
|
||||||
# shape: (batch_size, seq_len, d_model)
|
# shape: (batch_size, seq_len, d_model)
|
||||||
x = block(
|
hidden_states = decoder_layer(
|
||||||
positions,
|
positions,
|
||||||
x,
|
hidden_states,
|
||||||
kv_caches[block_idx],
|
kv_caches[layer_idx],
|
||||||
attn_metadata,
|
attn_metadata,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Apply final layer norm.
|
# Apply final layer norm.
|
||||||
# shape: (batch_size, seq_len or 1, d_model)
|
# shape: (batch_size, seq_len or 1, d_model)
|
||||||
x = self.transformer.ln_f(x) # type: ignore
|
hidden_states = self.norm(hidden_states)
|
||||||
return x
|
return hidden_states
|
||||||
|
|
||||||
|
|
||||||
class OLMoForCausalLM(nn.Module):
|
class OlmoForCausalLM(nn.Module):
|
||||||
"""
|
"""
|
||||||
Extremely barebones HF model wrapper.
|
Extremely barebones HF model wrapper.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
config: OLMoConfig,
|
config: OlmoConfig,
|
||||||
linear_method: Optional[LinearMethodBase] = None):
|
linear_method: Optional[LinearMethodBase] = None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.linear_method = linear_method
|
self.linear_method = linear_method
|
||||||
self.model = OlmoModel(config, linear_method)
|
self.model = OlmoModel(config, linear_method)
|
||||||
self.lm_head_weight = (self.model.transformer.wte.weight
|
if config.tie_word_embeddings:
|
||||||
if config.weight_tying else
|
self.lm_head_weight = self.model.embed_tokens.weight
|
||||||
self.model.transformer.ff_out.weight)
|
else:
|
||||||
|
self.unpadded_vocab_size = config.vocab_size
|
||||||
|
self.lm_head = ParallelLMHead(
|
||||||
|
self.unpadded_vocab_size,
|
||||||
|
config.hidden_size,
|
||||||
|
org_num_embeddings=config.vocab_size,
|
||||||
|
)
|
||||||
|
self.lm_head_weight = self.lm_head.weight
|
||||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||||
self.sampler = Sampler()
|
self.sampler = Sampler()
|
||||||
|
|
||||||
@ -348,20 +318,39 @@ class OLMoForCausalLM(nn.Module):
|
|||||||
return next_tokens
|
return next_tokens
|
||||||
|
|
||||||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||||
|
stacked_params_mapping = [
|
||||||
|
# (param_name, shard_name, shard_id)
|
||||||
|
("qkv_proj", "q_proj", "q"),
|
||||||
|
("qkv_proj", "k_proj", "k"),
|
||||||
|
("qkv_proj", "v_proj", "v"),
|
||||||
|
("gate_up_proj", "gate_proj", 0),
|
||||||
|
("gate_up_proj", "up_proj", 1),
|
||||||
|
]
|
||||||
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
||||||
for name, loaded_weight in weights:
|
for name, loaded_weight in weights:
|
||||||
# attention
|
if "rotary_emb.inv_freq" in name:
|
||||||
if ".att" in name:
|
continue
|
||||||
name = name.replace(".att", ".attn.att")
|
if ("rotary_emb.cos_cached" in name
|
||||||
# mlp
|
or "rotary_emb.sin_cached" in name):
|
||||||
if ".ff_proj" in name:
|
# Models trained using ColossalAI may include these tensors in
|
||||||
name = name.replace(".ff_proj", ".mlp.ff_proj")
|
# the checkpoint. Skip them.
|
||||||
# Reverse the weight for the MergeColumnParallelLinear
|
continue
|
||||||
loaded_weight = torch.concat(loaded_weight.chunk(2)[::-1])
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
||||||
if ".ff_out" in name and "transformer.ff_out" not in name:
|
if weight_name not in name:
|
||||||
name = name.replace(".ff_out", ".mlp.ff_out")
|
continue
|
||||||
# there is no bias in olmo
|
name = name.replace(weight_name, param_name)
|
||||||
param = params_dict[name]
|
# Skip loading extra bias for GPTQ models.
|
||||||
weight_loader = getattr(param, "weight_loader",
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
default_weight_loader)
|
continue
|
||||||
weight_loader(param, loaded_weight)
|
param = params_dict[name]
|
||||||
|
weight_loader = param.weight_loader
|
||||||
|
weight_loader(param, loaded_weight, shard_id)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
# Skip loading extra bias for GPTQ models.
|
||||||
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
|
continue
|
||||||
|
param = params_dict[name]
|
||||||
|
weight_loader = getattr(param, "weight_loader",
|
||||||
|
default_weight_loader)
|
||||||
|
weight_loader(param, loaded_weight)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user