Integration SM100 FlashInfer fused allreduce RMSNorm (#20691)

Signed-off-by: ilmarkov <imarkov@redhat.com>
Co-authored-by: ilmarkov <imarkov@redhat.com>
This commit is contained in:
Ilya Markov 2025-07-12 03:58:15 +02:00 committed by GitHub
parent 7b828e30d5
commit fc0f41d10a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 514 additions and 6 deletions

View File

@ -0,0 +1,152 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from importlib.util import find_spec
import pytest
import torch
import vllm.envs as envs
from vllm.compilation.collective_fusion import AllReduceFusionPass
from vllm.config import (CompilationConfig, CompilationLevel, DeviceConfig,
ModelConfig, PassConfig, VllmConfig)
from vllm.distributed import tensor_model_parallel_all_reduce
from vllm.distributed.parallel_state import (init_distributed_environment,
initialize_model_parallel)
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.platforms import current_platform
from vllm.utils import update_environment_variables
from ..utils import multi_gpu_test
from .backend import TestBackend
class TestAllReduceRMSNormModel(torch.nn.Module):
def __init__(self, hidden_size=16, eps=1e-6):
super().__init__()
self.hidden_size = hidden_size
self.eps = eps
self.norm = RMSNorm(hidden_size, eps)
def forward(self, hidden_states, residual):
view = hidden_states.reshape(-1, self.hidden_size)
all_reduce = tensor_model_parallel_all_reduce(view)
norm = self.norm(all_reduce)
return norm
def ops_in_model_before(self):
return [torch.ops.vllm.all_reduce.default]
def ops_in_model_after(self):
return [torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default]
class TestAllReduceFusedAddRMSNormModel(torch.nn.Module):
def __init__(self, hidden_size=16, eps=1e-6):
super().__init__()
self.hidden_size = hidden_size
self.eps = eps
self.norm = RMSNorm(hidden_size, eps)
def forward(self, hidden_states, residual):
view = hidden_states.reshape(-1, self.hidden_size)
all_reduce = tensor_model_parallel_all_reduce(view)
norm, _ = self.norm(all_reduce, residual)
return norm
def ops_in_model_before(self):
return [torch.ops.vllm.all_reduce.default]
def ops_in_model_after(self):
return [torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default]
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize(
"test_model",
[TestAllReduceRMSNormModel, TestAllReduceFusedAddRMSNormModel])
@pytest.mark.parametrize("batch_size", [8])
@pytest.mark.parametrize("seq_len", [8])
@pytest.mark.parametrize("hidden_size", [4096])
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE not in ["cuda"],
reason="Only test on CUDA")
@pytest.mark.skipif(not find_spec("flashinfer"),
reason="flashinfer is not installed")
@pytest.mark.skipif(not current_platform.is_device_capability(100),
reason="Only test on SM100")
def test_all_reduce_fusion_pass_replace(test_model: torch.nn.Module,
batch_size: int, seq_len: int,
hidden_size: int, dtype: torch.dtype):
num_processes = 2
def run_torch_spawn(fn, nprocs):
torch.multiprocessing.spawn(fn,
args=(num_processes, test_model,
batch_size, seq_len, hidden_size,
dtype),
nprocs=nprocs)
run_torch_spawn(all_reduce_fusion_pass_on_test_model, num_processes)
def all_reduce_fusion_pass_on_test_model(local_rank: int, world_size: int,
test_model_cls: torch.nn.Module,
batch_size: int, seq_len: int,
hidden_size: int, dtype: torch.dtype):
current_platform.seed_everything(0)
device = torch.device(f"cuda:{local_rank}")
torch.cuda.set_device(device)
torch.set_default_device(device)
torch.set_default_dtype(dtype)
update_environment_variables({
'RANK': str(local_rank),
'LOCAL_RANK': str(local_rank),
'WORLD_SIZE': str(world_size),
'MASTER_ADDR': 'localhost',
'MASTER_PORT': '12345',
})
init_distributed_environment()
initialize_model_parallel(tensor_model_parallel_size=world_size)
vllm_config = VllmConfig(
compilation_config=CompilationConfig(level=CompilationLevel.PIECEWISE,
custom_ops=["+rms_norm"],
compile_sizes=[2, 4, 8]))
vllm_config.compilation_config.pass_config = PassConfig(
enable_fi_allreduce_fusion=True)
vllm_config.device_config = DeviceConfig(device=torch.device("cuda"))
# this is a fake model name to construct the model config
# in the vllm_config, it's not really used.
model_name = "nm-testing/TinyLlama-1.1B-Chat-v1.0-FP8-e2e"
vllm_config.model_config = ModelConfig(model=model_name,
task="auto",
tokenizer=model_name,
tokenizer_mode="auto",
trust_remote_code=True,
dtype=dtype,
seed=42)
all_reduce_fusion_pass = AllReduceFusionPass(
vllm_config, vllm_config.compilation_config.pass_config.
fi_allreduce_fusion_max_token_num)
backend = TestBackend(all_reduce_fusion_pass)
model = test_model_cls(hidden_size)
hidden_states = torch.randn((batch_size * seq_len, hidden_size),
requires_grad=False)
residual = torch.randn((batch_size * seq_len, hidden_size),
requires_grad=False)
compiled_model = torch.compile(model, backend=backend)
compiled_model(hidden_states, residual)
backend.check_before_ops(model.ops_in_model_before(), fully_replaced=False)
backend.check_after_ops(model.ops_in_model_after())
del all_reduce_fusion_pass

View File

@ -1,23 +1,39 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from importlib.util import find_spec
from typing import Optional
import torch
import torch._inductor.pattern_matcher as pm
import torch.fx as fx
from torch._higher_order_ops.auto_functionalize import auto_functionalized
from torch._inductor.pattern_matcher import PatternMatcherPass
from torch.distributed._symmetric_memory import enable_symm_mem_for_group
from vllm.config import VllmConfig
from vllm.distributed import get_tp_group
from vllm.distributed import get_tp_group, tensor_model_parallel_all_reduce
from vllm.distributed.parallel_state import (
get_tensor_model_parallel_world_size)
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from vllm.logger import init_logger
from vllm.utils import direct_register_custom_op
from .vllm_inductor_pass import VllmInductorPass
if find_spec("flashinfer"):
import flashinfer.comm as flashinfer_comm
flashinfer_comm = (flashinfer_comm if hasattr(
flashinfer_comm, "trtllm_allreduce_fusion") else None)
else:
flashinfer_comm = None
from vllm.platforms import current_platform
logger = init_logger(__name__)
ALLREDUCE_OP = torch.ops.vllm.all_reduce.default
RMS_OP = torch.ops._C.rms_norm.default
RMS_ADD_OP = torch.ops._C.fused_add_rms_norm.default
class BasePattern:
@ -43,7 +59,8 @@ class GEMMReduceScatterPattern(BasePattern):
mm,
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name)
group_name=self.tp.unique_name,
)
return reduce_scatter
def replacement(mul: torch.Tensor, mm_weight: torch.Tensor):
@ -79,7 +96,8 @@ class AllGatherGEMMPattern(BasePattern):
x,
dim=0,
world_size=self.tp_size,
group_name=self.tp.unique_name)
group_name=self.tp.unique_name,
)
return torch.ops.aten.mm.default(all_gather, weight)
@ -125,3 +143,333 @@ class AsyncTPPass(VllmInductorPass):
logger.debug("Replaced %s patterns", count)
self.dump_graph(graph, "after_async_tp_pass")
self.end_and_log()
if flashinfer_comm is not None:
_FI_WORKSPACE_TENSOR = None
MiB = 1024 * 1024
# Max size of the input tensor per world size
# to use flashinfer fused allreduce
_FI_MAX_SIZES = {
2: MiB, # 1MB
4: MiB, # 1MB
6: MiB // 2, # 512KB
8: MiB // 2, # 512KB
}
def call_trtllm_fused_allreduce_norm(
allreduce_in: torch.Tensor,
residual: torch.Tensor,
rms_gamma: torch.Tensor,
rms_eps: float,
world_rank: int,
world_size: int,
launch_with_pdl: bool,
trigger_completion_at_end: bool,
fp32_acc: bool,
max_token_num: int,
norm_out: Optional[torch.Tensor] = None,
) -> None:
use_flashinfer = allreduce_in.shape[0] * allreduce_in.shape[
1] * allreduce_in.element_size() <= min(
_FI_MAX_SIZES[world_size],
max_token_num * allreduce_in.shape[0] *
allreduce_in.element_size(),
)
if use_flashinfer:
assert (_FI_WORKSPACE_TENSOR is not None
), "Flashinfer must be enabled when using flashinfer"
if norm_out is None:
norm_out = allreduce_in
residual_out = residual
else:
# return residual_out as allreduce_out with zeroed residual_in
# as flashinfer does not support rms_norm
# and allreduce_out together
residual_out = allreduce_in
# For the sizes that are smaller than the max size,
# we only use flashinfer one shot allreduce
flashinfer_comm.trtllm_allreduce_fusion(
allreduce_in=allreduce_in,
token_num=allreduce_in.shape[0],
residual_in=residual,
residual_out=residual_out,
norm_out=norm_out,
rms_gamma=rms_gamma,
rms_eps=rms_eps,
world_rank=world_rank,
world_size=world_size,
hidden_dim=allreduce_in.shape[-1],
workspace_ptrs=_FI_WORKSPACE_TENSOR,
launch_with_pdl=launch_with_pdl,
use_oneshot=True,
trigger_completion_at_end=trigger_completion_at_end,
fp32_acc=fp32_acc,
pattern_code=flashinfer_comm.AllReduceFusionPattern.
kARResidualRMSNorm,
allreduce_out=None,
quant_out=None,
scale_out=None,
layout_code=None,
scale_factor=None,
)
else:
allreduce_out = tensor_model_parallel_all_reduce(allreduce_in)
if norm_out is None:
torch.ops._C.fused_add_rms_norm(allreduce_out, residual,
rms_gamma, rms_eps)
else:
torch.ops._C.rms_norm(norm_out, allreduce_out, rms_gamma,
rms_eps)
allreduce_in.copy_(allreduce_out)
def call_trtllm_fused_allreduce_norm_fake(
allreduce_in: torch.Tensor,
residual: torch.Tensor,
rms_gamma: torch.Tensor,
rms_eps: float,
world_rank: int,
world_size: int,
launch_with_pdl: bool,
trigger_completion_at_end: bool,
fp32_acc: bool,
max_token_num: int,
norm_out: Optional[torch.Tensor] = None,
) -> None:
pass
direct_register_custom_op(
op_name="flashinfer_trtllm_fused_allreduce_norm",
op_func=call_trtllm_fused_allreduce_norm,
mutates_args=[
"allreduce_in",
"residual",
"norm_out",
],
fake_impl=call_trtllm_fused_allreduce_norm_fake,
dispatch_key=current_platform.dispatch_key,
)
flashinfer_trtllm_fused_allreduce_norm = (
torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default)
class FlashInferFusedAllReduceParams:
"""Parameters for FlashInfer fused allreduce operations."""
def __init__(
self,
rank: int,
world_size: int,
use_fp32_lamport: bool = False,
max_token_num: int = 1024,
):
self.rank = rank
self.world_size = world_size
self.use_fp32_lamport = use_fp32_lamport
self.trigger_completion_at_end = True
self.launch_with_pdl = True
self.fp32_acc = True
self.use_oneshot = False
self.max_token_num = max_token_num
def get_trtllm_fused_allreduce_kwargs(self):
return {
"world_rank": self.rank,
"world_size": self.world_size,
"launch_with_pdl": self.launch_with_pdl,
"trigger_completion_at_end": self.trigger_completion_at_end,
"fp32_acc": self.fp32_acc,
"max_token_num": self.max_token_num,
}
class AllReduceRMSNORMPattern(BasePattern):
def __init__(
self,
epsilon: float,
dtype: torch.dtype,
device: str,
allreduce_params: FlashInferFusedAllReduceParams,
):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
def get_inputs(self):
input = torch.empty([1, 8, 4], device=self.device, dtype=self.dtype)
rms_result = torch.empty([1, 8, 4],
device=self.device,
dtype=self.dtype)
weight = torch.empty([4], device=self.device, dtype=self.dtype)
return [input, rms_result, weight]
def register(self, pm_pass: PatternMatcherPass):
def pattern(input: torch.Tensor, rms_result: torch.Tensor,
weight: torch.Tensor):
all_reduce_output = tensor_model_parallel_all_reduce(input)
rms = auto_functionalized(
RMS_OP,
result=rms_result,
input=all_reduce_output,
weight=weight,
epsilon=self.epsilon,
)
return rms[1], all_reduce_output
def replacement(input: torch.Tensor, rms_result: torch.Tensor,
weight: torch.Tensor):
residual = torch.zeros_like(input)
allreduce = auto_functionalized(
torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default,
allreduce_in=input,
residual=residual,
norm_out=rms_result,
rms_gamma=weight,
rms_eps=self.epsilon,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
return allreduce[3], allreduce[1]
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusedAddRMSNormPattern(BasePattern):
def __init__(
self,
epsilon: float,
dtype: torch.dtype,
device: str,
allreduce_params: FlashInferFusedAllReduceParams,
):
super().__init__(dtype, device)
self.epsilon = epsilon
self.allreduce_params = allreduce_params
def get_inputs(self):
input = torch.empty([4, 4], device=self.device, dtype=self.dtype)
residual = torch.empty([4, 4], device=self.device, dtype=self.dtype)
weight = torch.empty([4, 4], device=self.device, dtype=self.dtype)
return [
residual,
input,
weight,
]
def register(self, pm_pass: PatternMatcherPass):
def pattern(residual: torch.Tensor, input: torch.Tensor,
weight: torch.Tensor):
all_reduce_output = tensor_model_parallel_all_reduce(input)
rms = auto_functionalized(
RMS_ADD_OP,
input=all_reduce_output,
residual=residual,
weight=weight,
epsilon=self.epsilon,
)
return rms[1], rms[2]
def replacement(residual: torch.Tensor, input: torch.Tensor,
weight: torch.Tensor):
allreduce = auto_functionalized(
torch.ops.vllm.flashinfer_trtllm_fused_allreduce_norm.default,
allreduce_in=input,
residual=residual,
rms_gamma=weight,
rms_eps=self.epsilon,
norm_out=None,
**self.allreduce_params.get_trtllm_fused_allreduce_kwargs(),
)
return allreduce[1], allreduce[2]
pm.register_replacement(pattern, replacement, self.get_inputs(),
pm.fwd_only, pm_pass)
class AllReduceFusionPass(VllmInductorPass):
def __init__(self, config: VllmConfig, max_token_num: int):
super().__init__(config)
self.disabled = True
self.tp_size = get_tensor_model_parallel_world_size()
if self.tp_size <= 1:
return
self.patterns: PatternMatcherPass = PatternMatcherPass(
pass_name="all_reduce_fusion_pass")
if config.model_config is None:
return
self.hidden_dim = config.model_config.get_hidden_size()
self.group = get_tp_group().device_group
rank = get_tensor_model_parallel_rank()
use_fp32_lamport = self.model_dtype == torch.float32
if flashinfer_comm is None:
logger.warning(
"Flashinfer is not installed, skipping allreduce fusion pass")
return
# Check if the world size is supported
if self.tp_size not in _FI_MAX_SIZES:
logger.warning(
"Flashinfer allreduce fusion is not "
"supported for world size %s",
self.tp_size,
)
return
self.ipc_handles, workspace_tensor = (
flashinfer_comm.trtllm_create_ipc_workspace_for_all_reduce_fusion(
tp_rank=rank,
tp_size=self.tp_size,
max_token_num=max_token_num,
hidden_dim=self.hidden_dim,
group=self.group,
use_fp32_lamport=use_fp32_lamport,
))
global _FI_WORKSPACE_TENSOR
_FI_WORKSPACE_TENSOR = workspace_tensor
self.allreduce_params = FlashInferFusedAllReduceParams(
rank=rank,
world_size=self.tp_size,
use_fp32_lamport=use_fp32_lamport,
max_token_num=max_token_num,
)
for epsilon in [1e-5, 1e-6]:
AllReduceRMSNORMPattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
AllReduceFusedAddRMSNormPattern(
epsilon,
self.model_dtype,
self.device,
self.allreduce_params,
).register(self.patterns)
self.disabled = False
def __call__(self, graph: fx.Graph):
if self.disabled:
return
self.begin()
self.dump_graph(graph, "before_all_reduce_fusion_pass")
count = self.patterns.apply(graph)
logger.debug("Replaced %s patterns", count)
self.dump_graph(graph, "after_all_reduce_fusion_pass")
self.end_and_log()
def __del__(self):
if self.disabled:
return
if flashinfer_comm is not None:
flashinfer_comm.trtllm_destroy_ipc_workspace(
self.ipc_handles, self.group)

View File

@ -7,7 +7,7 @@ from vllm.config import VllmConfig
from vllm.logger import init_logger
from .activation_quant_fusion import ActivationQuantFusionPass
from .collective_fusion import AsyncTPPass
from .collective_fusion import AllReduceFusionPass, AsyncTPPass
from .fix_functionalization import FixFunctionalizationPass
from .fusion import FusionPass
from .fusion_attn import AttnFusionPass
@ -62,7 +62,11 @@ class PostGradPassManager(CustomGraphPass):
if self.pass_config.enable_attn_fusion:
self.passes += [AttnFusionPass(config)]
if self.pass_config.enable_fi_allreduce_fusion:
self.passes += [
AllReduceFusionPass(
config, self.pass_config.fi_allreduce_fusion_max_token_num)
]
self.fix_functionalization = FixFunctionalizationPass(config)
def add(self, pass_: InductorPass):

View File

@ -3962,6 +3962,10 @@ class PassConfig:
"""Whether to enable sequence parallelism."""
enable_async_tp: bool = False
"""Whether to enable async TP."""
enable_fi_allreduce_fusion: bool = False
"""Whether to enable flashinfer allreduce fusion."""
fi_allreduce_fusion_max_token_num: int = 1024
"""Max number of tokens to used in flashinfer allreduce fusion."""
# TODO(luka) better pass enabling system.