mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-14 13:14:59 +08:00
[Models] Support Qwen model with PP (#6974)
Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
This commit is contained in:
parent
f4fd390f5d
commit
fc912e0886
@ -50,7 +50,7 @@ You can also additionally specify :code:`--pipeline-parallel-size` to enable pip
|
|||||||
$ --pipeline-parallel-size 2
|
$ --pipeline-parallel-size 2
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
Pipeline parallel is a beta feature. It is only supported for online serving as well as LLaMa, GPT2, and Mixtral style models.
|
Pipeline parallel is a beta feature. It is only supported for online serving as well as LLaMa, GPT2, Mixtral, Qwen, Qwen2, and Nemotron style models.
|
||||||
|
|
||||||
Multi-Node Inference and Serving
|
Multi-Node Inference and Serving
|
||||||
--------------------------------
|
--------------------------------
|
||||||
|
|||||||
@ -42,6 +42,7 @@ _PP_SUPPORTED_MODELS = [
|
|||||||
"NemotronForCausalLM",
|
"NemotronForCausalLM",
|
||||||
"Qwen2ForCausalLM",
|
"Qwen2ForCausalLM",
|
||||||
"Qwen2MoeForCausalLM",
|
"Qwen2MoeForCausalLM",
|
||||||
|
"QWenLMHeadModel",
|
||||||
]
|
]
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -12,7 +12,7 @@ from transformers import PretrainedConfig
|
|||||||
|
|
||||||
from vllm.attention import Attention, AttentionMetadata
|
from vllm.attention import Attention, AttentionMetadata
|
||||||
from vllm.config import CacheConfig
|
from vllm.config import CacheConfig
|
||||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||||
from vllm.model_executor.layers.activation import SiluAndMul
|
from vllm.model_executor.layers.activation import SiluAndMul
|
||||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||||
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
|
||||||
@ -30,6 +30,8 @@ from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|||||||
from vllm.sequence import IntermediateTensors, SamplerOutput
|
from vllm.sequence import IntermediateTensors, SamplerOutput
|
||||||
from vllm.utils import print_warning_once
|
from vllm.utils import print_warning_once
|
||||||
|
|
||||||
|
from .utils import is_pp_missing_parameter, make_layers
|
||||||
|
|
||||||
|
|
||||||
class QWenMLP(nn.Module):
|
class QWenMLP(nn.Module):
|
||||||
|
|
||||||
@ -186,6 +188,7 @@ class QWenModel(nn.Module):
|
|||||||
config: PretrainedConfig,
|
config: PretrainedConfig,
|
||||||
cache_config: Optional[CacheConfig] = None,
|
cache_config: Optional[CacheConfig] = None,
|
||||||
quant_config: Optional[QuantizationConfig] = None,
|
quant_config: Optional[QuantizationConfig] = None,
|
||||||
|
prefix: str = "",
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
@ -195,10 +198,10 @@ class QWenModel(nn.Module):
|
|||||||
config.vocab_size,
|
config.vocab_size,
|
||||||
config.hidden_size,
|
config.hidden_size,
|
||||||
)
|
)
|
||||||
self.h = nn.ModuleList([
|
self.start_layer, self.end_layer, self.h = make_layers(
|
||||||
QWenBlock(config, cache_config, quant_config)
|
config.num_hidden_layers,
|
||||||
for _ in range(config.num_hidden_layers)
|
lambda prefix: QWenBlock(config, cache_config, quant_config),
|
||||||
])
|
prefix=f"{prefix}.h")
|
||||||
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
@ -207,18 +210,29 @@ class QWenModel(nn.Module):
|
|||||||
positions: torch.Tensor,
|
positions: torch.Tensor,
|
||||||
kv_caches: List[torch.Tensor],
|
kv_caches: List[torch.Tensor],
|
||||||
attn_metadata: AttentionMetadata,
|
attn_metadata: AttentionMetadata,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors],
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
hidden_states = self.wte(input_ids)
|
if get_pp_group().is_first_rank:
|
||||||
residual = None
|
hidden_states = self.wte(input_ids)
|
||||||
for i in range(len(self.h)):
|
residual = None
|
||||||
|
else:
|
||||||
|
assert intermediate_tensors is not None
|
||||||
|
hidden_states = intermediate_tensors["hidden_states"]
|
||||||
|
residual = intermediate_tensors["residual"]
|
||||||
|
for i in range(self.start_layer, self.end_layer):
|
||||||
layer = self.h[i]
|
layer = self.h[i]
|
||||||
hidden_states, residual = layer(
|
hidden_states, residual = layer(
|
||||||
positions,
|
positions,
|
||||||
hidden_states,
|
hidden_states,
|
||||||
kv_caches[i],
|
kv_caches[i - self.start_layer],
|
||||||
attn_metadata,
|
attn_metadata,
|
||||||
residual,
|
residual,
|
||||||
)
|
)
|
||||||
|
if not get_pp_group().is_last_rank:
|
||||||
|
return IntermediateTensors({
|
||||||
|
"hidden_states": hidden_states,
|
||||||
|
"residual": residual
|
||||||
|
})
|
||||||
hidden_states, _ = self.ln_f(hidden_states, residual)
|
hidden_states, _ = self.ln_f(hidden_states, residual)
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
@ -250,9 +264,23 @@ class QWenLMHeadModel(nn.Module):
|
|||||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||||
) -> torch.Tensor:
|
) -> torch.Tensor:
|
||||||
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
||||||
attn_metadata)
|
attn_metadata, intermediate_tensors)
|
||||||
return hidden_states
|
return hidden_states
|
||||||
|
|
||||||
|
def make_empty_intermediate_tensors(
|
||||||
|
self, batch_size: int, dtype: torch.dtype,
|
||||||
|
device: torch.device) -> IntermediateTensors:
|
||||||
|
return IntermediateTensors({
|
||||||
|
"hidden_states":
|
||||||
|
torch.zeros((batch_size, self.config.hidden_size),
|
||||||
|
dtype=dtype,
|
||||||
|
device=device),
|
||||||
|
"residual":
|
||||||
|
torch.zeros((batch_size, self.config.hidden_size),
|
||||||
|
dtype=dtype,
|
||||||
|
device=device),
|
||||||
|
})
|
||||||
|
|
||||||
def compute_logits(self, hidden_states: torch.Tensor,
|
def compute_logits(self, hidden_states: torch.Tensor,
|
||||||
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
sampling_metadata: SamplingMetadata) -> torch.Tensor:
|
||||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||||
@ -284,6 +312,9 @@ class QWenLMHeadModel(nn.Module):
|
|||||||
# Skip loading extra bias for GPTQ models.
|
# Skip loading extra bias for GPTQ models.
|
||||||
if name.endswith(".bias") and name not in params_dict:
|
if name.endswith(".bias") and name not in params_dict:
|
||||||
continue
|
continue
|
||||||
|
# Skip layers on other devices.
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
param = params_dict[name]
|
param = params_dict[name]
|
||||||
weight_loader = param.weight_loader
|
weight_loader = param.weight_loader
|
||||||
weight_loader(param, loaded_weight, shard_id)
|
weight_loader(param, loaded_weight, shard_id)
|
||||||
@ -301,6 +332,9 @@ class QWenLMHeadModel(nn.Module):
|
|||||||
"Only text inputs are allowed. Images won't be handled "
|
"Only text inputs are allowed. Images won't be handled "
|
||||||
"until Qwen-VL models are fully supported.")
|
"until Qwen-VL models are fully supported.")
|
||||||
continue
|
continue
|
||||||
|
# Skip layers on other devices.
|
||||||
|
if is_pp_missing_parameter(name, self):
|
||||||
|
continue
|
||||||
param = params_dict[name]
|
param = params_dict[name]
|
||||||
weight_loader = getattr(param, "weight_loader",
|
weight_loader = getattr(param, "weight_loader",
|
||||||
default_weight_loader)
|
default_weight_loader)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user