[Models] Support Qwen model with PP (#6974)

Signed-off-by: Muralidhar Andoorveedu <muralidhar.andoorveedu@centml.ai>
This commit is contained in:
Murali Andoorveedu 2024-08-01 12:40:43 -07:00 committed by GitHub
parent f4fd390f5d
commit fc912e0886
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 46 additions and 11 deletions

View File

@ -50,7 +50,7 @@ You can also additionally specify :code:`--pipeline-parallel-size` to enable pip
$ --pipeline-parallel-size 2 $ --pipeline-parallel-size 2
.. note:: .. note::
Pipeline parallel is a beta feature. It is only supported for online serving as well as LLaMa, GPT2, and Mixtral style models. Pipeline parallel is a beta feature. It is only supported for online serving as well as LLaMa, GPT2, Mixtral, Qwen, Qwen2, and Nemotron style models.
Multi-Node Inference and Serving Multi-Node Inference and Serving
-------------------------------- --------------------------------

View File

@ -42,6 +42,7 @@ _PP_SUPPORTED_MODELS = [
"NemotronForCausalLM", "NemotronForCausalLM",
"Qwen2ForCausalLM", "Qwen2ForCausalLM",
"Qwen2MoeForCausalLM", "Qwen2MoeForCausalLM",
"QWenLMHeadModel",
] ]

View File

@ -12,7 +12,7 @@ from transformers import PretrainedConfig
from vllm.attention import Attention, AttentionMetadata from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig from vllm.config import CacheConfig
from vllm.distributed import get_tensor_model_parallel_world_size from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
@ -30,6 +30,8 @@ from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput from vllm.sequence import IntermediateTensors, SamplerOutput
from vllm.utils import print_warning_once from vllm.utils import print_warning_once
from .utils import is_pp_missing_parameter, make_layers
class QWenMLP(nn.Module): class QWenMLP(nn.Module):
@ -186,6 +188,7 @@ class QWenModel(nn.Module):
config: PretrainedConfig, config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None, cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None, quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
): ):
super().__init__() super().__init__()
self.config = config self.config = config
@ -195,10 +198,10 @@ class QWenModel(nn.Module):
config.vocab_size, config.vocab_size,
config.hidden_size, config.hidden_size,
) )
self.h = nn.ModuleList([ self.start_layer, self.end_layer, self.h = make_layers(
QWenBlock(config, cache_config, quant_config) config.num_hidden_layers,
for _ in range(config.num_hidden_layers) lambda prefix: QWenBlock(config, cache_config, quant_config),
]) prefix=f"{prefix}.h")
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward( def forward(
@ -207,18 +210,29 @@ class QWenModel(nn.Module):
positions: torch.Tensor, positions: torch.Tensor,
kv_caches: List[torch.Tensor], kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata, attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors],
) -> torch.Tensor: ) -> torch.Tensor:
hidden_states = self.wte(input_ids) if get_pp_group().is_first_rank:
residual = None hidden_states = self.wte(input_ids)
for i in range(len(self.h)): residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.h[i] layer = self.h[i]
hidden_states, residual = layer( hidden_states, residual = layer(
positions, positions,
hidden_states, hidden_states,
kv_caches[i], kv_caches[i - self.start_layer],
attn_metadata, attn_metadata,
residual, residual,
) )
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.ln_f(hidden_states, residual) hidden_states, _ = self.ln_f(hidden_states, residual)
return hidden_states return hidden_states
@ -250,9 +264,23 @@ class QWenLMHeadModel(nn.Module):
intermediate_tensors: Optional[IntermediateTensors] = None, intermediate_tensors: Optional[IntermediateTensors] = None,
) -> torch.Tensor: ) -> torch.Tensor:
hidden_states = self.transformer(input_ids, positions, kv_caches, hidden_states = self.transformer(input_ids, positions, kv_caches,
attn_metadata) attn_metadata, intermediate_tensors)
return hidden_states return hidden_states
def make_empty_intermediate_tensors(
self, batch_size: int, dtype: torch.dtype,
device: torch.device) -> IntermediateTensors:
return IntermediateTensors({
"hidden_states":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
"residual":
torch.zeros((batch_size, self.config.hidden_size),
dtype=dtype,
device=device),
})
def compute_logits(self, hidden_states: torch.Tensor, def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor: sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states, logits = self.logits_processor(self.lm_head, hidden_states,
@ -284,6 +312,9 @@ class QWenLMHeadModel(nn.Module):
# Skip loading extra bias for GPTQ models. # Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict: if name.endswith(".bias") and name not in params_dict:
continue continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name] param = params_dict[name]
weight_loader = param.weight_loader weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id) weight_loader(param, loaded_weight, shard_id)
@ -301,6 +332,9 @@ class QWenLMHeadModel(nn.Module):
"Only text inputs are allowed. Images won't be handled " "Only text inputs are allowed. Images won't be handled "
"until Qwen-VL models are fully supported.") "until Qwen-VL models are fully supported.")
continue continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name] param = params_dict[name]
weight_loader = getattr(param, "weight_loader", weight_loader = getattr(param, "weight_loader",
default_weight_loader) default_weight_loader)