mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 00:25:01 +08:00
[Minor] More fix of test_cache.py CI test failure (#2750)
This commit is contained in:
parent
ed70c70ea3
commit
fe6d09ae61
@ -181,16 +181,15 @@ def test_swap_blocks(
|
||||
num_blocks: int,
|
||||
dtype: torch.dtype,
|
||||
seed: int,
|
||||
device: int,
|
||||
device: str,
|
||||
) -> None:
|
||||
random.seed(seed)
|
||||
torch.random.manual_seed(seed)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(seed)
|
||||
src_device = f"{direction[0]}:{device}" if direction[
|
||||
0] == "cuda" else direction[0]
|
||||
dst_device = f"{direction[1]}:{device}" if direction[
|
||||
1] == "cuda" else direction[1]
|
||||
|
||||
src_device = device if direction[0] == "cuda" else 'cpu'
|
||||
dst_device = device if direction[1] == "cuda" else 'cpu'
|
||||
|
||||
src_blocks = random.sample(range(num_blocks), num_mappings)
|
||||
# For the same device, mapping must not overlap
|
||||
|
||||
@ -258,10 +258,13 @@ def create_kv_caches_with_random(
|
||||
key_cache = torch.empty(size=key_cache_shape,
|
||||
dtype=torch_dtype,
|
||||
device=device)
|
||||
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
|
||||
key_cache.uniform_(-scale, scale)
|
||||
elif cache_dtype == 'fp8_e5m2':
|
||||
if cache_dtype == 'fp8_e5m2':
|
||||
_generate_random_fp8_e5m2(key_cache, -scale, scale)
|
||||
elif torch_dtype in [torch.half, torch.bfloat16, torch.float]:
|
||||
key_cache.uniform_(-scale, scale)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Does not support key cache of type {cache_dtype}")
|
||||
key_caches.append(key_cache)
|
||||
|
||||
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
|
||||
@ -270,9 +273,12 @@ def create_kv_caches_with_random(
|
||||
value_cache = torch.empty(size=value_cache_shape,
|
||||
dtype=torch_dtype,
|
||||
device=device)
|
||||
if cache_dtype in ["auto", "half", "bfloat16", "float"]:
|
||||
value_cache.uniform_(-scale, scale)
|
||||
elif cache_dtype == 'fp8_e5m2':
|
||||
if cache_dtype == 'fp8_e5m2':
|
||||
_generate_random_fp8_e5m2(value_cache, -scale, scale)
|
||||
elif torch_dtype in [torch.half, torch.bfloat16, torch.float]:
|
||||
value_cache.uniform_(-scale, scale)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Does not support value cache of type {cache_dtype}")
|
||||
value_caches.append(value_cache)
|
||||
return key_caches, value_caches
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user