[KV offload][5/N] Add CPUOffloadingSpec (#24251)

Signed-off-by: Or Ozeri <oro@il.ibm.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
This commit is contained in:
Or Ozeri 2025-09-22 22:30:36 +03:00 committed by yewentao256
parent 6dbbecd5b2
commit ff54b6bfe3
5 changed files with 146 additions and 0 deletions

View File

@ -31,6 +31,12 @@ Now supports 5 types of connectors:
--kv-transfer-config '{"kv_connector":"MultiConnector","kv_role":"kv_both","kv_connector_extra_config":{"connectors":[{"kv_connector":"NixlConnector","kv_role":"kv_both"},{"kv_connector":"SharedStorageConnector","kv_role":"kv_both","kv_connector_extra_config":{"shared_storage_path":"local_storage"}}]}}'
```
- **OffloadingConnector**: enable offloading of KV data to CPU memory, customizing the CPU block size (in tokens) and number of blocks to allocate (per worker):
```bash
--kv-transfer-config '{"kv_connector":"OffloadingConnector","kv_role":"kv_both","kv_connector_extra_config":{"block_size": 64, "num_cpu_blocks": 1000}}'
```
## Benchmarks
Please refer to <gh-file:benchmarks/disagg_benchmarks> for disaggregated prefilling benchmarks.

View File

@ -0,0 +1,62 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import time
import pytest
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
CPU_BLOCK_SIZES = [16, 48]
@pytest.mark.parametrize("cpu_block_size", CPU_BLOCK_SIZES)
def test_cpu_offloading(cpu_block_size: int) -> None:
"""
Tests OffloadingConnector with CPUOffloadingSpec.
"""
# configure OffloadingConnector (spec_name=CPUOffloadingSpec by default)
kv_transfer_config = KVTransferConfig(
kv_connector="OffloadingConnector",
kv_role="kv_both",
kv_connector_extra_config={
"num_cpu_blocks": 100,
"block_size": cpu_block_size
},
)
llm = LLM(
model="meta-llama/Llama-3.2-1B-Instruct",
gpu_memory_utilization=0.5,
kv_transfer_config=kv_transfer_config,
)
prompts = ["Hi " * 100]
sampling_params = SamplingParams(temperature=0, max_tokens=20)
# run generation - this should trigger saving KV cache
start_time = time.time()
llm.generate(prompts, sampling_params, use_tqdm=False)
cold_time = time.time() - start_time
# run generation again - should hit the GPU prefix cache
start_time = time.time()
llm.generate(prompts, sampling_params, use_tqdm=False)
gpu_hit_time = time.time() - start_time
# reset prefix cache to avoid GPU hit.
llm.reset_prefix_cache()
# sleep for a sec to make sure CPU finished storing
time.sleep(1)
# run generation again - this should trigger loading from CPU
start_time = time.time()
llm.generate(prompts, sampling_params, use_tqdm=False)
cpu_hit_time = time.time() - start_time
print("Generation times:")
print(f" Cold: {cold_time * 1000:.2f}ms")
print(f" GPU hit: {gpu_hit_time * 1000:.2f}ms")
print(f" CPU hit: {cpu_hit_time * 1000:.2f}ms")

75
vllm/v1/kv_offload/cpu.py Normal file
View File

@ -0,0 +1,75 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterator
from typing import Optional
import torch
from vllm.config import VllmConfig, get_layers_from_vllm_config
from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
from vllm.platforms import current_platform
from vllm.v1.kv_offload.abstract import LoadStoreSpec, OffloadingManager
from vllm.v1.kv_offload.backends.cpu import CPUBackend
from vllm.v1.kv_offload.lru_manager import LRUOffloadingManager
from vllm.v1.kv_offload.mediums import CPULoadStoreSpec, GPULoadStoreSpec
from vllm.v1.kv_offload.spec import OffloadingSpec
from vllm.v1.kv_offload.worker.cpu_gpu import CpuGpuOffloadingHandler
from vllm.v1.kv_offload.worker.worker import OffloadingHandler
class CPUOffloadingSpec(OffloadingSpec):
def __init__(self, vllm_config: VllmConfig):
super().__init__(vllm_config)
num_cpu_blocks = self.extra_config.get("num_cpu_blocks")
if not num_cpu_blocks:
raise Exception("num_cpu_blocks must be specified "
"in kv_connector_extra_config")
self.num_cpu_blocks: int = num_cpu_blocks
# scheduler-side
self._manager: Optional[OffloadingManager] = None
# worker-side
self._handler: Optional[OffloadingHandler] = None
def get_manager(self) -> OffloadingManager:
if not self._manager:
kv_events_config = self.vllm_config.kv_events_config
enable_events = (kv_events_config is not None
and kv_events_config.enable_kv_cache_events)
self._manager = LRUOffloadingManager(CPUBackend(
block_size=self.offloaded_block_size,
num_blocks=self.num_cpu_blocks),
enable_events=enable_events)
return self._manager
def get_handlers(
self, kv_caches: dict[str, torch.Tensor]
) -> Iterator[tuple[type[LoadStoreSpec], type[LoadStoreSpec],
OffloadingHandler]]:
if not self._handler:
if not current_platform.is_cuda():
raise Exception("CPU Offloading is currently only supported"
" on CUDA GPUs")
layer_names = list(kv_caches.keys())
layers = get_layers_from_vllm_config(self.vllm_config,
AttentionLayerBase,
layer_names)
attn_backends = {
layer_name: layers[layer_name].get_attn_backend()
for layer_name in layer_names
}
self._handler = CpuGpuOffloadingHandler(
attn_backends=attn_backends,
gpu_block_size=self.gpu_block_size,
cpu_block_size=self.offloaded_block_size,
num_cpu_blocks=self.num_cpu_blocks,
gpu_caches=kv_caches)
assert self._handler is not None
yield GPULoadStoreSpec, CPULoadStoreSpec, self._handler
yield CPULoadStoreSpec, GPULoadStoreSpec, self._handler

View File

@ -51,3 +51,6 @@ class OffloadingSpecFactory:
# Register various specs here.
OffloadingSpecFactory.register_spec("CPUOffloadingSpec",
"vllm.v1.kv_offload.cpu",
"CPUOffloadingSpec")