Bug description:
With torch 2.4.0.dev20240603+cu121,
cutlass_fp8_supported outputs False, and the (capability, version) before the comparison is (90, 11111111112)
This PR fixes the support check for FP8 CUTLASS ( cutlass_fp8_supported) which was introduced in https://github.com/vllm-project/vllm/pull/5183.
Currently we need to call rotary embedding kernel for each LoRA, which makes it hard to serve multiple long context length LoRA. Add batched rotary embedding kernel and pipe it through.
It replaces the rotary embedding layer to the one that is aware of multiple cos-sin-cache per scaling factors.
Follow up of https://github.com/vllm-project/vllm/pull/3095/files
This PR combines prepare_prompt and prepare_decode into a single API. This PR also coelsce the attn metadata for prefill/decode to a single class and allow to slice them when running attn backend.
It also refactors subquery_start_loc which was not refactored in the previous PR
This PR improves the FP8 performance of linear layers, which had been lacking before (#4118 (comment) and #4118 (comment)).
We noticed that CUBLASLt can find a better algorithm if the first dimension of the matrix is greater than 16. So this PR enlarges matrices appropriately during quantization. This improves FP8 performance and removes the performance regression vs. FP16, in many cases exceeding FP16 performance.
Here are benchmarks on llama3 70b (ITL numbers for 1000 input and 50 output tokens at fixed qps and at TP 4), all FP8 measurements are for dynamic quantization:
qps = 1: 24 ms (FP8, this PR), 32 ms (FP8, previous main), 26 ms (FP16)
qps = 2: 26 ms (FP8, this PR), 34ms (FP8, previous main), 28 ms (FP16)
qps = 4: 33 ms (FP8, this PR), 44 ms (FP8, previous main), 36 ms (FP16)
qps = 6: 46 ms (FP8, this PR), 56 ms (FP8, previous main), 54 ms (FP16)
qps = 8: 85 ms (FP8, this PR), 85 ms (FP8, previous main), 138 ms (FP16)
This PR updates the tuning script for the fused_moe kernel to support FP8 and also adds configurations for TP4. Note that for the configuration I removed num_warps and num_stages for small batch sizes since that improved performance and brought the benchmarks on par with the numbers before in that regime to make sure this is a strict improvement over the status quo.
All the numbers below are for mistralai/Mixtral-8x7B-Instruct-v0.1, 1000 input and 50 output tokens.
Before this PR (with static activation scaling):
qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency
qps = 4: 10.1 ms ITL, 0.52s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 14.0 ms ITL, 0.70s e2e latency
qps = 10: 15.7 ms ITL, 0.79s e2e latency
After this PR (with static activation scaling):
qps = 1: 9.8 ms ITL, 0.49s e2e latency
qps = 2: 9.7 ms ITL, 0.49s e2e latency
qps = 4: 10.2 ms ITL, 0.53s e2e latency
qps = 6: 11.9 ms ITL, 0.59s e2e latency
qps = 8: 11.9 ms ITL, 0.59s e2e latency
qps = 10: 12.1 ms ITL, 0.61s e2e latency
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: mgoin <michael@neuralmagic.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>